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1 Introduction to Linear Codes

For the purposes of coding, we will be working with linear algebra on finite fields. We will
only need to work with the field F n

2 , composed of the elements {0, 1}n and the operations
⊕ and ·.

Definition 1 A linear code C is a linear subspace of F n
2

Claim 2 For every linear code C, there exist the parity check matrix H and the generator
matrix G which satisfy C = {x ∈ F n

2 : Hx = 0} and C = imageG = {Gy : y ∈ {0, 1}m}

These matrices H and G allow us to characterize and study codes. However, for a particular
code, H and G are not necessarily unique. The parity check matrix has a clear interpretation
as an adjacency matrix of the code’s factor graph: each row represents a factor node, and
the value of each column in the row indicates whether the corresponding variable node is
connected to the factor node or not.

Definition 3 The factor graph of a parity check matrix H has n variable nodes x1, . . . , xn

and m factor nodes. Each factor node corresponds to a row of H and is connected to all
the x nodes which have non-zero coefficients in the row.

Each factor node (and row of H) prevents some values of x from being code words. Thus,
any x which is not restricted by any of the factors is a valid code word, and so the uniform
distribution factorizes into a product of indicators, one for each factor nodes. PH(x) =
1
Z

∏
m

a=0 1(HaX = 0)

Claim 4 Observe that for any linear subspace, the addition of a constraint linearly inde-
pendent from the previous constraints eliminates half the elements in the subspace, so it

follows that |C| = 2N−Rank(H) ≥ 2N−M
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2 Ensembles of factor graphs with a given degree distribu-

tion.

Recall that Λ(x) =
∑

∞

n=0 Λnxn where Λn is the fraction of variable nodes of degree N.
Analogously, P (x) =

∑
∞

n=0 Pnxn where Pn is the fraction of factor nodes of degree n.

One way of defining a uniform distribution over factor nodes is by stating that

Definition 5 DN (Λ, P ) is the uniform distribution over a graph containing N variable
nodes, and the degree profile given by (Λ, P )

However, this definition raises several questions. First, does a single graph satisfying these
constraints exist? How can we sample from this distribution? It turns out that it is very
difficult to sample from the distribution coming from this definition, even on regular graphs.
Thus, this definition is not very useful.

An alternative definition is the ”Configuration Model,” which results in a different, but
close, distribution over graphs.

Definition 6 Define a uniform distribution over random graphs with NΛi verteces of degree
i, and MPi factor nodes of degree i.

We can sample this model with the following algorithm:

1. For each of the NΛi variable nodes, create i variable sub-nodes.

2. For each of the MPi factor nodes, create i factor sub-nodes.

3. Randomly, connect each variable sub-node to a factor sub-node to produce a graph.

The a diagram of the generating process is in Figure 1.

Although this is not the same model as the prior, intractable definition, the models are
closely related when the degrees of the nodes are not too high. For purposes of coding,
when there are multiple (m) edges between a particular variable and factor node, they
are replaced by m mod 2. This produces the same code, as double-xor is always 0, but
eliminates the problem of duplicate edges.

Exercise 7 Suppose Λ(1), P (1) < 0 and let m be the number of parallel edges. Show that
E(m) = O(1)
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Figure 1: Generating a random factor graph. The edges in the middle are random, but
every small circle on the left has to be paired with a small square on the right.

Exercise 8 Let Λ̄ be the degree distribution of the variable nodes before removing the par-
allel edges, and Λ be the degree distribution after. Similarly, let P̄ be the degree distribution
of factor nodes before parallel edge removal, and P be the degree distribution after.

Show that E(
∑

l
|Λl − Λ̄l| +

∑
l
|Pl − P̄l|) = O( 1

n
)

Definition 9 A low density parity check code (LDPCC) is an ensemble of codes of
DN (Λ, P )

Underlying this definition is the assumption that we truncate Λ, P at n(N) such that
n << n(N) << N

The design rate of the code is N−M

N
= 1 − Λ′(1)

P ′(1)

Since the code is linear, the distribution of code words around a particular code word X

is the same for all X. Thus, in order to study the properties of the code, it is sufficient to
consider X = 0.

One desired property of a code is that the code words be far apart, so that drift from errors
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in transmission would be lower than the spacing between code words.

Definition 10 For a linear code C, the weight-enumerator function WN (ω) is the number
of words of weight ω, where w(x) = dH(x, 0) = {i : xi = 1}

For LDPCCN (Λ, P ), let W̄ (ω) = E(W (ω)). We write W̄ (Nω) for W̄ (Nω) ≈ exp(Nϕ(ω))

meaning ϕ(ω) = log W̄ (Nω)
N

plus lower-order terms.

w

w

Figure 2: The bipartite graph used for counting LDPCCs for estimating W̄

It is not easy to analyze W̄ but analyzing W is much harder. Computing W̄ involves looking
at an x such that W (x) = w and counting LDPCCN (Λ, P ) for which x is a code word. In
order to do that, we construct a bipartite graph with variable nodes on the left, and factors
on the right. We represent edges from xi = 1 to a factor node with red edges, and edges
from xi = 0 by black edges. In that case, it is sufficient to count the number of factor graphs
where every factor node is adjacent to an even number of red edges. This construction can
be seen in Figure 2.
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