1 Brief Introduction to Second Moment Method

In previous lecture, we presented a lower bound for threshold of satisfiability problem by unit clause propagation algorithm. In this lecture, we use the second moment method to give another, and better lower bound for K-SAT problem. We recall the basic setting below.

Let $P_N(k, \alpha)$ be the probability that a random formula from $\text{SAT}_N(k, M = \alpha N)$ ensemble is SAT. We try to find a lower bound of α, such that $P_N(k, \alpha) \to 0$ as $N \to \infty$.

At first, let’s go over the main ideas of second moment method. Given a nonnegative function U, which is defined in the space of all K-SAT formulas, satisfying $U(\psi) = 0$ if ψ is not SAT. Then,

$$P[\psi \text{ is SAT}] \geq P[U(\psi) > 0] \geq \frac{\mathbb{E}^2[U(\psi)]}{\mathbb{E}[U^2(\psi)]},$$

by Cauchy-Shwarz inequality. So, we try to pick up some function U whose moments can be evaluated efficiently, and give us a meaningful bound as well.

Remark 1 It is an art to pick up U. For example, if we take $U(\psi) = \#$ of satisfying assignments, it will give us nothing but a zero lower bound.

Here, we take

$$U(\psi) = \sum_{x \in \{0,1\}^N} \prod_{a=1}^M \omega(x, a),$$

in which

$$\omega(x, a) = \begin{cases} 0, & \text{if } C_a(x) = 0; \\ \lambda^r(x,a), & \text{if } C_a(x) = 1, r(x,a) = \# \text{ of variables in } x \text{ satisfying } C_a. \end{cases}$$

Now, we try to computer the first and second moment of $U(\psi)$.

9-1
2 Computation of First Moment

By the definition of U,

\[
E[U(\psi)] = E\left[\sum_{x \in \{0,1\}^N} \prod_{a=1}^{M} \omega(x, a) \right]
\]

\[
= \sum_{x \in \{0,1\}^N} E\left[\prod_{a=1}^{M} \omega(x, a) \right]
\]

\[
= 2^N E[\omega(x, a)]^M
\]

Last equality holds since the clauses in a formula are chosen independently (with repetition).

Since

\[
E[\omega(x, a)] = 2^{-k} \sum_{r=1}^{k} \binom{n}{k} \lambda^r
\]

\[
= 2^{-k}[(1 + \lambda)^k - 1]
\]

We conclude:

Claim 2 $\frac{\log E[U(\psi)]}{N} = \log 2 - \alpha k \log 2 + \alpha \log[(1 + \lambda)^k - 1] \equiv h_1(\lambda, \alpha)$.

3 Computation of Second Moment

The second moment calculations are typically more involved:
\[\mathbb{E}[U^2(\psi)] = \sum_{x,y \in \{0,1\}^N} \mathbb{E}\left[\prod_{a=1}^M \omega(x,a) \prod_{a=1}^M \omega(y,a) \right] \]

\[= \sum_{x,y \in \{0,1\}^N} \{ \mathbb{E}[\omega(x,a)\omega(y,a)] \}^M \]

(let \(L = d_H(x,y) \) Hamming distance)

\[= \sum_{x \in \{0,1\}^N} \sum_{L=0}^N \sum_{y:d_H(y,x)=L} \mathbb{E}\{ [\omega(x,a)\omega(y,a)] \}^M \]

\[= 2^N \sum_{L=0}^N \binom{N}{L} (g(N,L))^M, \] \hspace{1cm} (1)

where

\[g(N,L) = 2^{-k} \sum_{u,v \neq 0}^N \lambda^{w(u)} \lambda^{w(v)} (\frac{L}{N})^{d(u,v)} (1 - \frac{L}{N})^{k-d(u,v)}. \]

Here, \(w(u) \) denotes \# of 1’s in \(u \). (1) is true because

Claim 3 If \(d_H(x,y) = L \), then \(\mathbb{E}[\omega(x,a)\omega(y,a)] = g(N,L) \).

Proof: Denote \(u \) as \((u_1,u_2,\ldots,u_k)\), and let \(u_i = 1 \) if and only if the \(i \)th position of \(a \) is satisfied by \(x \), i.e., the \(i \)th variable in \(a \) and the counterpart in \(x \) have the same sigh. And similarly define \(v \). Now we fix \(u, v \) and then count the number of corresponding clauses. We give a brief case by case analysis. If \(u_i = v_i \), then the \(i \)th variable of \(a \) can be and only be picked up from those for which \(x \) and \(y \) have the same value; if \(u_i \neq v_i \), then the \(i \)th variable of \(a \) can be and only be picked up from those for which \(x \) and \(y \) have different values. And in both cases, the sigh of the variable has one and only one choice. Summing over all possible choices of \(u \) and \(v \), we get the equality in the claim. \(\square \)

Now, we turn to the computation of \(g(N,L) \). For simplicity of notation, we let \(Z = \frac{L}{N} \). So,

\[2^k g(N,L) = \sum_{u,v \in \{0,1\}^k} \lambda^{w(u)+w(v)} Z^{d_H(u,v)} (1-Z)^{k-d_H(u,v)} \]

\[-2 \sum_{u \in \{0,1\}^k} \lambda^{w(u)} Z^{w(u)} (1-Z)^{k-w(u)} + (1-Z)^k \]

\[\equiv I_1 - 2I_2 + (1-Z)^k. \] \hspace{1cm} (2)
By fixing the Hamming distance of \(u \) and \(v \) and summing over the number of 1’s in common positions, we get

\[
I_1 = \sum_{d=0}^{k} \binom{k}{d} 2^d Z^d (1 - Z)^{k-d} \sum_{r=0}^{k-d} \lambda^{r+d} \binom{k-d}{r}
\]
\[
= \sum_{d=0}^{k} \binom{k}{d} 2^d Z^d \lambda^{d} (1 - Z)^{k-d} (1 + \lambda^2)^{k-d}
\]
\[
= (2\lambda Z + (1 - Z)(1 + \lambda^2))^k. \tag{3}
\]

And fixing number of 1’s in \(u \) and then summing over, we get

\[
I_2 = \sum_{r=0}^{k} \binom{k}{r} \lambda^{r} Z^r (1 - Z)^{k-r}
\]
\[
= (\lambda Z + (1 - Z))^k. \tag{4}
\]

Combining (2), (3) and (4), we get

\[
2^k g(N, L) = (2\lambda Z + (1 - Z)(1 + \lambda^2))^k - 2(\lambda Z + (1 - Z))^k + (1 - Z)^k.
\]

Based on discussions above, we are ready to make a claim as follow:

Claim 4 \(\log \mathbb{E}[U^2(\psi)] / N \approx \log 2 + \max_{0 \leq Z \leq 1} \{-Z \log Z - (1 - Z) \log (1 - Z) + \alpha \log f(Z, \lambda)\} - \alpha k \log 2 \equiv h_2(\lambda, \alpha, Z) \), in which \(f(Z, \lambda) = 2^k g(N, L) \).

Proof: Using Stirling formula for the factorials and note that the order of logarithm of sum depends mainly on the maximum term in the sum. \(\square \)

4 Comparisons of Two Moments and Conclusion

We summarize the remaining steps of the argument without detail.

- \(h_2(\lambda, \alpha, \frac{1}{2}) = 2h_1(\lambda, \alpha) \).
- Unless \(Z = \frac{1}{2} \) maximizes \(h_2(\lambda, \alpha, \frac{1}{2}) \), \(\mathbb{E}^2[|\psi|] / \mathbb{E}^2[|\psi|^2] \) is exponentially small when \(N \) goes to \(\infty \).
- \(Z = \frac{1}{2} \) being a maximizer implies that \((1 + \lambda)^{k-1} = \frac{1}{1-\lambda} \).
• while λ satisfying last equality and $\alpha < 2^k \log 2 - k - 5$, $Z = \frac{1}{2}$ is the maximizer and meanwhile,

$$\frac{E^2[U(\psi)]}{E[U^2(\psi)]} \approx \frac{\exp(2Nh_1(\lambda, \alpha))}{\exp(Nh_2(\lambda, \alpha, 1/2))} = \Omega(1).$$

From discussion above, now we can get the main conclusion in this lecture.

Theorem 5 The lower bound of α, in order that a random $\text{SAT}_N(K, M)$ formula is SAT with vanishing probability in the $N \to \infty$ limit, can be reached through second moment method as: $\alpha \geq 2^k \log 2 - k - 5$.

Remark 6 Suppose α such that second moment works and $\exists Z < \frac{1}{2}$, s.t. $h_2(\lambda, \alpha, Z) < 0$, then there are clusters in the space of solutions. Formally, \exists pair of solutions at distance $\frac{N}{2}$, and \nexists pair of solutions at distance ZN.