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Lecture 9
Lecture date: SEP 26 Scribe: Jian Ding

1 Brief Introduction to Second Moment Method

In previous lecture, we presented a lower bound for threshold of satisfiability problem by
unit clause propagation algorithm. In this lecture, we use the second moment method to give
another, and better lower bound for K-SAT problem. We recall the basic setting below.

Let Py (k, ) be the probability that a random formula from SATxN(k, M = aN') ensemble
is SAT. we try to find a lower bound of «, such that Py(k,a) — 0 as N — oo.

At first, let’s go over the main ideas of second moment method. Given a nonnegative
function U, which is defined in the space of all K-SAT formulas, satisfying U(y) = 0 if ¢
is not SAT. Then,

E*[U(¢)]

E[U2(¢)]’

by Cauchy-Shwarz inequality. So, we try to pick up some function U whose moments can
be evaluated efficiently, and give us a meaningful bound as well.

P[y is SAT] > P[U() > 0] >

Remark 1 [t is an art to pick up U. For example, if we take U(yp) = # of satisfying
assignments, it will give us nothing but a zero lower bound.

Here, we take

M
vw)= Y [wa),

ze{0,1}V a=1

in which

(2. a) 0, if Cu(z)=0;
w(z,a) =
@) i Oy (x) = 1,r(x, a) = # of variables in x satisfying C,.

Now, we try to computer the first and second moment of U(1)).
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2 Computation of First Moment

By the definition of U,

M
EUW)] = B[ Y [[wl.a)

z€{0,1}V a=1
M

= > E[][w(0)
z€{0,1}V  a=1
= 2VE[w(z,a)]M

Last equality holds since the clauses in a formula are chosen independently (with repetition).
Since

k

Elw(z,a)] = 2—’“;<Z>A’”

27 (1 4+ Ak - 1]

We conclude:

Claim 2 w =log2 — aklog2 + alog[(1 + \)¥ — 1] = hi()\, ).

3 Computation of Second Moment

The second moment calculations are typically more involved:



E[U*(y)] = Y E[]]Mu(z.a) [] Moly, )]

zye{0,1}N  a=l

_ Z {Elw(z, a)w(y, a)]}M

z,ye{0,1}

(letL = dp(z,y)Hamming distance)

N
= > Y Y Ek@awma}V

ze{0,1}N L=0y:d (y,x)=L

N
= Y (D)o )
L=0

where I I
_ 9~k wu)yww)  “\du,w) 1 \k—d(u,w)
u,v#0,
u,we{0,1}F

Here, w(u) denotes # of 1’s in u. (1) is true because

Claim 3 Ifdy(z,y) = L, then Elw(z,a)w(y,a)] = g(N, L).

Proof: Denote u as (ui,us,...,ug), and let u; = 1 if and only if the ith position of a is
satisfied by x, i.e., the ith variable in a and the counterpart in x have the same sigh. And
similarly define v. Now we fix u, v and then count the number of corresponding clauses.
We give a brief case by case analysis. If u; = v;, then the ith variable of a can be and
only be picked up from those for which x and y have the same value; if u; # v;,then the
ith variable of a can be and only be picked up from those for which x and y have different
values. And in both cases, the sigh of the variable has one and only one choice. Summing
over all possible choices of u and v, we get the equality in the claim. O

Now, we turn to the computation of g(N, L). For simplicity of notation, we let Z = % So,
okg(N,L) = ST ) i) () z)kdi )
u,vef{0,1}*
-2 Z )\w(u)Zw(u)(l _ Z)k*w(u) +(1-2)F
ue{0,1}k
= I, -2L+(1-2)~ 2)



By fixing the Hamming distance of v and v and summing over the number of 1’s in common
positions, we get

k—d
k k—d
2dzd 1—-27 k—d /\T"rd/\?“
(d) ( AR .

r=0

>

d

<k> QdZd)\d(l _ Z)kfd(l + AQ)kfd
d
= (2AZ+ (1 —2)(1 + X)), (3)

Il
=)

And fixing number of 1’s in u and then summing over, we get

I, = zk: <I:> N ZT(1— Z)kr

r=0
= \Z+(1-2)" (4)

Combining (2), (3) and (4), we get

2kg(N, L) = 2AZ + (1 = Z2) 1+ X)) =202+ (1 = 2))* + (1 — 2)~.
Based on discussions above, we are ready to make a claim as follow:

Claim 4 log E[U%(¢))]/N =~ log 2+maxo<z<1{—Z log Z—(1—Z)log(1—Z)+alog f(Z,\)}—
aklog2 = ha(\ o, Z), in which f(Z,\) = 2*g(N, L).
Proof: Using Stirling formula for the factorials and note that the order of logarithm of sum
depends mainly on the maximum term in the sum. O

4 Comparisons of Two Moments and Conclusion
We summarize the remaining steps of the argumet without detail.

e ho(X o, 1) =2hi(N a).

1) E2[U]

1 ..
e Unless Z = 5 maximizes ha(), @, 5), B

is exponentially small when N goes to oc.

o / = % being a maximizer implies that (1 + \)¥~! = ﬁ



e while \ satisfying last equality and o < 2¥log2 — k — 5, Z = % is the maximizer and
meanwhile,
EXU()] _ exp2Nhi(Aa))
E[U2(¢)]  exp(Nha(), a,1/2))

=Q(1).
From discussion above, now we can get the main conclusion in this lecture.

Theorem 5 The lower bound of «, in order that a random SAT N (K, M) formula is SAT

with vanishing probability in the N — oo limit, can be reached through second moment
method as: o > 2¥log2 — k — 5.

Remark 6 Suppose o such that second moment works and 37 < %, s.t. ho(N\, o, Z) <0,
then there are clusters in the space of solutions. Formally, 3 pair of solutions at distance
%, and P pair of solutions at distance ZN .
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