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Lecture 9

Lecture date: SEP 26 Scribe: Jian Ding

1 Brief Introduction to Second Moment Method

In previous lecture, we presented a lower bound for threshold of satisfiability problem by
unit clause propagation algorithm. In this lecture, we use the second moment method to give
another, and better lower bound for K-SAT problem. We recall the basic setting below.

Let PN (k, α) be the probability that a random formula from SATN (k,M = αN) ensemble
is SAT. we try to find a lower bound of α, such that PN (k, α) → 0 as N →∞.

At first, let’s go over the main ideas of second moment method. Given a nonnegative
function U , which is defined in the space of all K-SAT formulas, satisfying U(ψ) = 0 if ψ
is not SAT. Then,

P[ψ is SAT] ≥ P[U(ψ) > 0] ≥ E2[U(ψ)]
E[U2(ψ)]

,

by Cauchy-Shwarz inequality. So, we try to pick up some function U whose moments can
be evaluated efficiently, and give us a meaningful bound as well.

Remark 1 It is an art to pick up U . For example, if we take U(ψ) = # of satisfying
assignments, it will give us nothing but a zero lower bound.

Here, we take

U(ψ) =
∑

x∈{0,1}N

M∏
a=1

ω(x, a),

in which

ω(x, a) =

{
0, if Ca(x) = 0;
λr(x,a), if Ca(x) = 1, r(x, a) = # of variables in x satisfying Ca.

Now, we try to computer the first and second moment of U(ψ).
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2 Computation of First Moment

By the definition of U ,

E[U(ψ)] = E[
∑

x∈{0,1}N

M∏
a=1

ω(x, a)]

=
∑

x∈{0,1}N

E[
M∏
a=1

ω(x, a)]

= 2NE[ω(x, a)]M

Last equality holds since the clauses in a formula are chosen independently (with repetition).
Since

E[ω(x, a)] = 2−k
k∑
r=1

(
n

k

)
λr

= 2−k[(1 + λ)k − 1]

We conclude:

Claim 2 log E[U(ψ)]
N = log 2− αk log 2 + α log[(1 + λ)k − 1] ≡ h1(λ, α).

3 Computation of Second Moment

The second moment calculations are typically more involved:
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E[U2(ψ)] =
∑

x,y∈{0,1}N

E[
∏
a=1

Mω(x, a)
∏
a=1

Mω(y, a)]

=
∑

x,y∈{0,1}N

{E[ω(x, a)ω(y, a)]}M

(letL = dH(x, y)Hamming distance)

=
∑

x∈{0,1}N

N∑
L=0

∑
y:d

H
(y,x)=L

E{[ω(x, a)ω(y, a)]}M

= 2N
N∑
L=0

(
N

L

)
(g(N,L))M , (1)

where
g(N,L) = 2−k

∑
u,v 6=0,

u,v∈{0,1}k

λw(u)λw(v)(
L

N
)d(u,v)(1− L

N
)k−d(u,v).

Here, w(u) denotes # of 1’s in u. (1) is true because

Claim 3 If dH(x, y) = L, then E[ω(x, a)ω(y, a)] = g(N,L).
Proof: Denote u as (u1, u2, . . . , uk), and let ui = 1 if and only if the ith position of a is
satisfied by x, i.e., the ith variable in a and the counterpart in x have the same sigh. And
similarly define v. Now we fix u, v and then count the number of corresponding clauses.
We give a brief case by case analysis. If ui = vi, then the ith variable of a can be and
only be picked up from those for which x and y have the same value; if ui 6= vi,then the
ith variable of a can be and only be picked up from those for which x and y have different
values. And in both cases, the sigh of the variable has one and only one choice. Summing
over all possible choices of u and v, we get the equality in the claim. 2

Now, we turn to the computation of g(N,L). For simplicity of notation, we let Z = L
N . So,

2kg(N,L) =
∑

u,v∈{0,1}k

λw(u)+w(v)ZdH(u,v)(1− Z)k−dH(u,v)

−2
∑

u∈{0,1}k

λw(u)Zw(u)(1− Z)k−w(u) + (1− Z)k

≡ I1 − 2I2 + (1− Z)k. (2)
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By fixing the Hamming distance of u and v and summing over the number of 1’s in common
positions, we get

I1 =
k∑
d=0

(
k

d

)
2dZd(1− Z)k−d

k−d∑
r=0

λr+dλr
(
k − d

r

)

=
k∑
d=0

(
k

d

)
2dZdλd(1− Z)k−d(1 + λ2)k−d

= (2λZ + (1− Z)(1 + λ2))k. (3)

And fixing number of 1’s in u and then summing over, we get

I2 =
k∑
r=0

(
k

r

)
λrZr(1− Z)k−r

= (λZ + (1− Z))k. (4)

Combining (2), (3) and (4), we get

2kg(N,L) = (2λZ + (1− Z)(1 + λ2))k − 2(λZ + (1− Z))k + (1− Z)k.

Based on discussions above, we are ready to make a claim as follow:

Claim 4 log E[U2(ψ)]/N ≈ log 2+max0≤Z≤1{−Z logZ−(1−Z) log(1−Z)+α log f(Z, λ)}−
αk log 2 ≡ h2(λ, α, Z), in which f(Z, λ) = 2kg(N,L).
Proof: Using Stirling formula for the factorials and note that the order of logarithm of sum
depends mainly on the maximum term in the sum. 2

4 Comparisons of Two Moments and Conclusion

We summarize the remaining steps of the argumet without detail.

• h2(λ, α, 1
2) = 2h1(λ, α).

• Unless Z = 1
2 maximizes h2(λ, α, 1

2), E2[U ]
E[U2]

is exponentially small when N goes to ∞.

• Z = 1
2 being a maximizer implies that (1 + λ)k−1 = 1

1−λ .
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• while λ satisfying last equality and α < 2k log 2− k − 5, Z = 1
2 is the maximizer and

meanwhile,
E2[U(ψ)]
E[U2(ψ)]

≈ exp(2Nh1(λ, α))
exp(Nh2(λ, α, 1/2))

= Ω(1).

From discussion above, now we can get the main conclusion in this lecture.

Theorem 5 The lower bound of α, in order that a random SATN (K,M) formula is SAT
with vanishing probability in the N → ∞ limit, can be reached through second moment
method as: α ≥ 2k log 2− k − 5.

Remark 6 Suppose α such that second moment works and ∃Z < 1
2 , s.t. h2(λ, α, Z) < 0,

then there are clusters in the space of solutions. Formally, ∃ pair of solutions at distance
N
2 , and @ pair of solutions at distance ZN .

9-5


