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Today we will sketch the analysis of unit clause propagation algorithm for 3-satisfiability
problem in more detail to get a lower bound of the satisfiability threshold. Before going to
the proof, let us rephrase the algorithm so that it becomes more amenable to analysis.

1 The Unit Clause Propagation Algorithm (UC)

Notation: For any set V of Boolean variables we L(V ) will denote the set of 2|V | literals
on the variables in V . Given a literal l, var(l) denotes its underlying variable and l̄ is the
complementary literal of l.

Input: A set of N Boolean variables V = {x1, x2, · · · , xN} and a SAT formula ψ on V .

1. (forced step) If there is any 1-clauses choose a 1-clause l uniformly at random from
them. Set V ← V \ {var(l)}.

2. (free step) Else choose l uniformly at random from L(V ). Set V ← V \ {var(l)}.

3. Remove all clauses containing l. Remove all occurrences of l̄ from all the clauses.

4. Repeat unless V is empty.

Output: If there is no 0-clauses, then ψ is SAT. Otherwise cannot determine.

Let V (t) be the (random) set of unassigned variables at time t and Ci(t) be the (random)
set of i-clauses remaining at time t, 0 ≤ t ≤ N, i = 0, 1, 2, 3. Denote the size of Ci(t) by
ci(t). Clearly, |L(V (t))| = 2|V (t)| = 2(N − t). Note that we make the algorithm run for
exactly N steps to simplify our analysis.

We will show that for the SATN (3, α) ensemble, if α < 8
3 , the probability that the Unit

Clause Propagation (UC) algorithm generates no 0-clauses until some time te ≡ te(N),
remains bounded away from zero and also the remaining N− te unassigned variables can be
dealt with quite easily so that finally we reach a SAT assignment with nontrivial probability
as N →∞.

Claim 1: For any t ∈ {0, 1, · · · , N}, each clause in Ci(t) is uniformly distributed among
the i-clauses over the literals in L(V (t)), i = 1, 2, 3.
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By induction on t. To see the induction step note that the literal at time t is chosen
uniformly at random from L(V (t − 1)). For free step it is obvious and for forced step
observe that C1(t− 1) is a set of randomly chosen 1-clauses over V (t− 1). �

Claim 2: Fix a small ε > 0 and take te = (1 − ε)N . If w.h.p.(with high probability)∑te−1
t=0 c1(t) < MN and c1(t) < ε2N for some constant M , then P(c0(te) = 0) > Ω(1).

If c1(t− 1) = 0 then no 0-clause can be generated in step t since every clauses loses at most
one literal in each step. If c1(t − 1) > 0 then in step t UC picks some literal l ∈ C1(t − 1)
at random and satisfy it. Clearly, if l̄ /∈ C1(t− 1) then no 0-clause will be generated at step
t. Hence, by uniform randomness, we get that the conditional on c1(t − 1) = a > 0, the
probability that no 0-clause is generated in step t is given by (1 − 1

2(n−t))
a−1. So, at any

time t ≤ te, probability of not getting an 0-clause is at least (1− 1
2εn)c1(t−1). Also note that

given c1(t− 1), the event that no 0-clause is generated in step t is independent of the event
that no 0-clauses in generated at time 1, 2, · · · , t − 1. Combining the above facts, we get
P(c0(te) = 0) ≥

∏
(1− c1(t)

2εN )Mn ≥ exp(−Ω(1)
∑
c1(t)/(εN)) ≥ Ω(1) . �

Let H(t) be 2 × (t + 1) matrix whose j-th column is (c2(j − 1), c3(j − 1))T . Thus H(t)
describes the entire history of the number of 2-clauses and 3-clauses up to time t. Let
∆ci(t) = ci(t+ 1)− ci(t).

Claim 3: For all 0 ≤ t ≤ N − 3, conditional on H(t),

∆c3(t) = −B1(t) and ∆c2(t) = B2(t)−B3(t),

where B1(t)
d= Bin

(
c3(t), 3

N−t

)
, B2(t)

d= Bin
(
c3(t), 3

2(N−t)

)
, B3(t)

d= Bin
(
c2(t), 2

N−t

)
.

Suppose literal l is chosen at time t + 1 among the literals in L(V (t)). By claim 1, every
clause a ∈ Ci(t), i = 2, 3 contains var(l), independently of all other clauses and with the
same probability. Since there are N − t unassigned variables and clause a contains i literals,
this probability is i/(N − t). This gives the negative terms in ∆c3(t) ∆c2(t) as each clause
containing var(l) is going to be removed from the set in which it belongs at time t. Note
that, also by claim 1, the probability that any clause a ∈ C3(t) contains l̄ is 3/2(N − t)
independent of other clauses, which gives rise to the positive term. �

Evolution of the number of 2 and 3 clauses has certain nice properties 1 which make it
possible to approximate { ci(xN)

N : 0 ≤ x ≤ 1− ε}, i = 2, 3 (for any fixed ε > 0) by solutions
of certain differential equations as N →∞.

1(i) the conditional change in each step is highly concentrated around its expectation, (ii) Knowing the
parameters of the process (t, c2(t), c3(t)) within o(N) suffices to determine (∆c2(t), ∆c3(t)) within o(1). In
other words ∆ci(t) is a ‘smooth’ function of t, c2(t) and c3(t).
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E(∆c3(t)
∣∣H(t)) = −3c3(t)

N − t
, c3(0) = αN

dη3

dx
= −3η3(x)

1− x
, η3(0) = α

E(∆c2(t)
∣∣H(t)) =

3c3(t)
2(N − t)

− 2c2(t)
(N − t)

, c2(0) = 0
dη2

dx
=

3η3(x)
2(1− x)

− 2η2(x)
1− x

, η2(0) = 0

Solving the two differential equations above, we get

η3(x) = α(1− x)3, η2(x) =
3
2
αx(1− x)2 (1)

The following claim is a consequence of a theorem of Wormald [?].

Claim 4 Fix ε > 0 and let te = (1− ε)N . Then w.h.p.

max
t≤te

∣∣ci(t)− ηi(t/N).N
∣∣ = o(N), i = 2, 3.

Claim 5 Fixed t ≤ N − 1. Then conditional on H(t), c1(t+ 1) ≤ max(c1(t)− 1, 0) +B4(t)
where B4(t)

d= Bin(c2(t), 1
N−t).

If c1(t) > 0 then the forced step ensures that at least one of the clauses in C1(t) gets removed
from the set of 1-clauses. Obviously, B4(t) denotes the number of 1-clauses that generates
from C2(t) at time t. If we have chosen literal l at time t+1 then, by claim 1, the probability
that any clause in C2(t) contains l̄ is 2/2(N − t), independent of others. �

Let us fix ε = 1
10 yielding te = (9/10)N and take α = 8

3(1− δ) where δ > 0 is any constant.
Since η2(x)

1−x ≤
3α
8 , using claim 4, we get w.h.p. c2(t) < (1 − δ

2)(N − t) for all t ≤ te which
implies that E

(
B4(t)

∣∣c2(t)) ≤ 1− δ
2 for all t ≤ te.

So it is intuitively clear that since the expected number of 1-clauses generated at time t is
bounded (w.h.p.) by 1− δ

2 where as the number of 1-clauses that gets removed from C1(t)
is at least 1 as long as c1(t) > 0, no accumulation of 1-clauses should take place during
the run of UC. In fact, under this condition, c1(t) behaves very much like the queue size
in a stable server system. We can formalize this in our next claim which can be proved
rigorously using the Lazy-server lemma (see Achlioptas [?]).

Claim 6 W.h.p. (i)
∑te

t=1 c1(t) ≤MN and (ii) max0≤t≤te c1(t) ≤ logK N for some constants
M and K.

The Claim 4 and 6 together assert that with positive probability there are no 0-clauses
or 1 clauses at time te. Furthermore, from claim 4, we can easily check w.h.p. c2(te) +
c3(te) < (3/4)(N − te). Now, to conclude the proof, we argue as follows. Given ψ in
SATN (3, α) with α fixed as above we run UC for exactly te steps. With positive probability
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the remaining formula will have no 0 or 1 clauses. By uniformity, the remaining formula is
the union of one random 2-SAT formula and an independent random 3-SAT formula (with
|V (te)| = N − te = Ω(N) variables and fewer (w.h.p.) than (3/4)(N − te) clauses). It is
easy to see that such a formula is satisfiable with high probability since a 2-SAT fromula
with the same number of clauses is satisfiable with high probability.

2 Method of Second Moment

In this section we will introduce yet another method for finding the lower bound of sat-
isfiability threshold for a random k-SAT problem. Given a SAT formula ψ we consider a
function U(ψ) such that

U(ψ)
{

= 0 if ψ is UNSAT
> 0 otherwise

(2)

The next lemma will be very useful.

Lemma 1

P(ψ is SAT) = P(U(ψ) > 0) ≥ [EU(ψ)]2

E[U(ψ)]2
.

Proof E2(U(ψ)) = [E{U(ψ)I(U(ψ) > 0)}]2 ≤ E[U(ψ)]2P(U(ψ) > 0) by Cauchy-Schwartz.
�

The success of this method depends heavily on the choice of suitable function U such that
ratio in the right side is bounded away from zero as N → ∞. In most of the cases the
choice of U turns out to be rather delicate. For example, the simple choice U(ψ) = Z(ψ) =
number of satisfying assignments does not give any significant lower bound. More precisely,
the ratio [EU(ψ)]2/E[U(ψ)]2 becomes exponentially small in N for any α > 0 (exercise).

Define

U(ψ) =
∑
x

M∏
a=1

W (x, a) (3)

Here the sum is taken over all the 2N assignments, and W (x, a) is the weight associated
with the clause a with the following property.

W (x, a)
{

= 0 if the assignment x does not satisfy clause a
> 0 otherwise

We take
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W (x, a) =
{

0 if x does not satisfy clause a
ϕ(r(x, a)) if x satisfies clause a

(4)

where r(x, a) = the number of variables in x satisfying clause a.
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