STAT 206A: Gibbs Measures Elchanan Mossel

Lecture &

Lecture date: Sep 21 Scribe: Arnab Sen

Today we will sketch the analysis of unit clause propagation algorithm for 3-satisfiability
problem in more detail to get a lower bound of the satisfiability threshold. Before going to
the proof, let us rephrase the algorithm so that it becomes more amenable to analysis.

1 The Unit Clause Propagation Algorithm (UC)

Notation: For any set V' of Boolean variables we L(V') will denote the set of 2|V] literals
on the variables in V. Given a literal [, var(l) denotes its underlying variable and [is the
complementary literal of [.

Input: A set of N Boolean variables V' = {x1,x9, -+ ,2y} and a SAT formula ¢ on V.

1. (forced step) If there is any 1-clauses choose a 1-clause ! uniformly at random from
them. Set V «— V' \ {var(l)}.

2. (free step) Else choose [uniformly at random from L(V). Set V «— V' \ {var(l)}.
3. Remove all clauses containing . Remove all occurrences of I from all the clauses.

4. Repeat unless V' is empty.

Output: If there is no O-clauses, then v is SAT. Otherwise cannot determine.

Let V (t) be the (random) set of unassigned variables at time ¢ and C;(t) be the (random)
set of i-clauses remaining at time ¢, 0 < ¢ < N, i = 0,1,2,3. Denote the size of C;(t) by
¢i(t). Clearly, |L(V(t))| = 2|V (t)| = 2(N — t). Note that we make the algorithm run for
exactly N steps to simplify our analysis.

We will show that for the SAT (3,) ensemble, if o < %, the probability that the Unit
Clause Propagation (UC) algorithm generates no 0-clauses until some time t. = t.(N),
remains bounded away from zero and also the remaining N —t. unassigned variables can be
dealt with quite easily so that finally we reach a SAT assignment with nontrivial probability
as N — oo.

Claim 1: For any t € {0,1,---, N}, each clause in C;(¢) is uniformly distributed among
the i-clauses over the literals in L(V (¢)), ¢ = 1,2,3.

8-1

By induction on ¢t. To see the induction step note that the literal at time ¢ is chosen
uniformly at random from L(V (¢t — 1)). For free step it is obvious and for forced step
observe that C(t — 1) is a set of randomly chosen 1-clauses over V(¢ — 1). O

Claim 2: Fix a small ¢ > 0 and take t. = (1 —&)N. If w.h.p.(with high probability)
Sleber(t) < MN and ¢ (t) < e2N for some constant M, then P(co(te) = 0) > Q(1).

If ¢1(t — 1) = 0 then no 0-clause can be generated in step ¢ since every clauses loses at most
one literal in each step. If ¢;(t — 1) > 0 then in step t UC picks some literal | € Cy(t — 1)
at random and satisfy it. Clearly, if [¢ C;(t — 1) then no 0-clause will be generated at step
t. Hence, by uniform randomness, we get that the conditional on ¢;(t — 1) = a > 0, the

probability that no O-clause is generated in step t is given by (1 — 2(n1_ t))afl. So, at any

time ¢ < t., probability of not getting an O-clause is at least (1 — Q%n)cl (t=1)_ Also note that
given ¢1(t — 1), the event that no 0-clause is generated in step ¢ is independent of the event

that no O-clauses in generated at time 1,2,--- ,t — 1. Combining the above facts, we get
P(co(te) = 0) > [1(1 — EM" > exp(—Q(1) Y er()/(eN)) > (1) . O

Let H(t) be 2 x (t + 1) matrix whose j-th column is (co(j — 1),¢3(5 — 1))T. Thus H(t)
describes the entire history of the number of 2-clauses and 3-clauses up to time t. Let
Aci(t) = Ci(t + 1) — Ci(t).

Claim 3: For all 0 < ¢ < N — 3, conditional on H(¢),

ACg(t) = —Bl(t) and ACQ(t) = Bg(t) — Bg(t),

where B1(t) £ Bin(cs(t), 12), Ba(t) = Bin(cs(t), sy) Bs(t) < Bin(ea(t), 525)-

Suppose literal [is chosen at time ¢ 4+ 1 among the literals in L(V(¢)). By claim 1, every
clause a € C;(t), ¢ = 2,3 contains var(l), independently of all other clauses and with the
same probability. Since there are N —t unassigned variables and clause a contains ¢ literals,
this probability is i /(N — t). This gives the negative terms in Acs(t) Aca(t) as each clause
containing var(l) is going to be removed from the set in which it belongs at time t. Note
that, also by claim 1, the probability that any clause a € C3(t) contains [is 3/2(N — t)
independent of other clauses, which gives rise to the positive term. O

Evolution of the number of 2 and 3 clauses has certain nice properties ! which make it
possible to approximate {%NN) :0<xz<1-¢},i=2,3 (for any fixed £ > 0) by solutions

of certain differential equations as N — oo.

(i) the conditional change in each step is highly concentrated around its expectation, (ii) Knowing the
parameters of the process (¢, c2(t), c3(t)) within o(N) suffices to determine (Aca(t), Acz(t)) within o(1). In
other words Ac;(t) is a ‘smooth’ function of ¢, c2(t) and c3(t).

8-2

E(Acs(t) }H —?\?Z){ti, c3(0) = aN % = —31773_(2),773(0) =«
E(Acy(t)[H(t)) = Q?ﬁ(f)t) - (?\?QEtz), c2(0) =0 % = 2?;;7352) B 217]2_(?7772(0) =0
Solving the two differential equations above, we get
m(e) = a(l =2, () = Sax(l - 2)? 1)

The following claim is a consequence of a theorem of Wormald [?].

Claim 4 Fix ¢ > 0 and let t, = (1 —¢)N . Then w.h.p.

?%X‘Cz m(t/N).N| =o(N), i =2,3.

Claim 5 Fixed t < N — 1. Then conditional on H(t), ¢1(t + 1) < max(c1(t) — 1,0) 4+ Ba(t)
where By(t) 4 Bin(ca(t), 7).
If ¢1(¢) > 0 then the forced step ensures that at least one of the clauses in C; (t) gets removed

from the set of 1-clauses. Obviously, B4(t) denotes the number of 1-clauses that generates
from Cy(t) at time t. If we have chosen literal [at time ¢+ 1 then, by claim 1, the probability

that any clause in Co(t) contains [is 2/2(N — t), independent of others. O
Let us fix e = 10 yielding t. = (9/10)N and take o = (1 0) where § > 0 is any constant.
Since 7’12—(? < 32 using claim 4, we get w.h.p. ca(t) < (1 — 8)(N —t) for all t < t, which

implies that E(By(t)[c2(t)) <1—9 for all t < te.

So it is intuitively clear that since the expected number of 1-clauses generated at time ¢ is
bounded (w.h.p.) by 1 — g where as the number of 1-clauses that gets removed from C; ()
is at least 1 as long as c¢1(t) > 0, no accumulation of 1-clauses should take place during
the run of UC. In fact, under this condition, ¢;(t) behaves very much like the queue size
in a stable server system. We can formalize this in our next claim which can be proved
rigorously using the Lazy-server lemma (see Achlioptas [?]).

Claim 6 W.h.p. (i) 324, ¢1(t) < M N and (ii) maxo<i<y, c1(t) < logh N for some constants
M and K.

The Claim 4 and 6 together assert that with positive probability there are no 0-clauses
or 1 clauses at time t.. Furthermore, from claim 4, we can easily check w.h.p. ca(te) +
c3(te) < (3/4)(N —t.). Now, to conclude the proof, we argue as follows. Given 9 in
SAT N (3, «) with « fixed as above we run UC for exactly ¢, steps. With positive probability

8-3

the remaining formula will have no 0 or 1 clauses. By uniformity, the remaining formula is
the union of one random 2-SAT formula and an independent random 3-SAT formula (with
|[V(te)] = N —t. = Q(N) variables and fewer (w.h.p.) than (3/4)(N — t.) clauses). It is
easy to see that such a formula is satisfiable with high probability since a 2-SAT fromula
with the same number of clauses is satisfiable with high probability.

2 Method of Second Moment

In this section we will introduce yet another method for finding the lower bound of sat-
isfiability threshold for a random k-SAT problem. Given a SAT formula ¢ we consider a
function U (%) such that

=0 if is UNSAT
> 0 otherwise

U(v) { (2)

The next lemma will be very useful.

Lemma 1

P (¢ is SAT) = P(U(¢) > 0) >

Proof E2(U(v)) = [E{U())I(U(v) > 0)}]> < E[U(¥)]?P(U(x) > 0) by Cauchy-Schwartz.
(]

The success of this method depends heavily on the choice of suitable function U such that
ratio in the right side is bounded away from zero as N — oco. In most of the cases the
choice of U turns out to be rather delicate. For example, the simple choice U(¢)) = Z(¢) =
number of satisfying assignments does not give any significant lower bound. More precisely,
the ratio [EU (v)]?/E[U(¢))]? becomes exponentially small in N for any o > 0 (exercise).

Define
M
Uw)=>_ W a) (3)

Here the sum is taken over all the 2V assignments, and W (x,a) is the weight associated
with the clause a with the following property.

=0 if the assignment x does not satisfy clause a
> (0 otherwise

W (x,a) {

We take

8-4

0 if x does not satisfy clause a
o(r(x,a)) if x satisfies clause a

W(x,a) = {

where 7(x, a) = the number of variables in x satisfying clause a.

References

[1] Achlioptas, D. , “Lower Bounds for Random 3-SAT via Differential Equations ,” The-
oretical Computer Science, 2001, pp. 159-185.

[2] Chao, M. and Franco, J., “Probabilistic analysis of two heuristic for the 3-satisfiablity
problem, ” STAM J. Comput.,15, 1986, pp. 1106-1118.

[3] Wormald, N.C. , “Differential equations for random processes and random graphs, ”
Ann. Appl. Probab. 5 (4), 1995, pp. 1217-1235

8-5

