STAT 206A: Gibbs Measures

Elchanan Mossel

Lecture 7

Lecture date: Sept. 19

Scribe: Partha S. Dey

In the previous lecture, using first moment argument on number of SAT assignments of a random k-SAT formula we proved the following theorem.

Theorem 1 Let $P_N(k, \alpha)$ be the probability that a random formula from $SAT_N(k, M = \alpha N)$ ensemble is SAT. If $\log 2 + \alpha \log(1 - 2^{-k}) < 0$, then

$$P_N(k,\alpha) \to 0 \text{ as } N \to \infty.$$

In today's lecture, instead of considering the set of all SAT assignments (that may have large cardinality for certain instantiation of the random formula), we consider a subset of it by taking SAT assignments that satisfy a local maximality criteria.

1 Locally Maximal Satisfying (LMS) Assignments

Definition 2 For a SAT formula ψ on N variables, an assignment $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \{0, 1\}^n$ is called a Locally Maximal Satisfying (LMS) assignment for ψ if

- 1. **x** satisfies ψ , i.e. $\psi(\mathbf{x}) = 1$ and
- 2. any assignment obtained from **x** by changing exactly one 0 value to 1 does not satisfy ψ .

The following claim immediately follows from the definition.

Claim 1 If ψ is satisfiable then there exists a LMS for ψ .

Proof: Consider the set of all assignments that satisfy ψ . This set is finite and nonempty. Take an assignment in this set with smallest number of 0's. That is clearly a LMS assignment for ψ .

Definition 3 For a SAT formula ψ , define,

 $U(\psi) =$ Total number of LMS assignments for ψ .

Lemma 4 Let ψ be a random formula from the $SAT_N(k, M)$ ensemble, where $M = \alpha N$ for some $\alpha > 0$. Then an upper bound for the expected value of the random variable $U(\psi)$ is given by,

$$\mathbf{E}[U(\psi)] \le (1+q)^N (1-2^{-k})^M,$$

= 1 - (1 - p)^M, and p = k/[N(2^k - 1)].

Before going to the proof of lemma 4, we state a corollary which gives a better upper bound on the satisfiability threshold than the one given in theorem 1.

Corollary 5 For any $k \ge 2$, let α^* be the unique positive solution of the equation:

$$f(\alpha) \equiv \alpha \log(1 - 2^{-k}) + \log\left[1 - \exp\left(\frac{-k\alpha}{2^k - 1}\right)\right] = 0.$$
(1)

Then $\lim_{N\to\infty} P_N(k,\alpha) = 0$ if $\alpha > \alpha^*$.

where q

Exercise 6 (1 point) Prove that equation (1) has a unique positive solution (Note that 0 is always a solution of (1)).

Proof: Assuming that the positive solution α^* of $f(\alpha) = 0$ is unique, it is easy to check that $f(\alpha) < 0$ for $\alpha > \alpha^*$. Now note that,

$$(1-p)^M = \left(1 - \frac{k}{N(2^k - 1)}\right)^{\alpha N} = \exp\left[-\frac{\alpha k}{2^k - 1}\right] + o(1).$$

Hence, using lemma 4 and the fact that ψ is SAT iff $U(\psi) \ge 1$, we have

$$P_N(k, \alpha) = \mathbf{P}(\psi \text{ is SAT}) = \mathbf{P}(U(\psi) \ge 1)$$

$$\leq \mathbf{E}[U(\psi)]$$

$$\leq (1 - 2^{-k})^M (1 + q)^N$$

$$= \left[(1 - 2^{-k})^\alpha \left(2 - \exp\left[-\frac{\alpha k}{2^k - 1} \right] + o(1) \right) \right]^N$$

$$= \left[e^{f(\alpha)} + o(1) \right]^N$$

$$\stackrel{N \to \infty}{\longrightarrow} 0, \text{ if } \alpha > \alpha^*.$$

Let us consider an assignment **x** where exactly L variables are set to 0 and the remaining N - L variables are set to 1. Without loss of generality, assume $x_1 = x_2 = \cdots = x_L = 0$, $x_{L+1} = \cdots = x_N = 1$.

Claim 2 The probability that a random clause constrains the variable x_1 , given that the clause is satisfied by the assignment \mathbf{x} is $p = k/[N(2^k - 1)]$.

Proof: Total number of k-clauses satisfied by **x** is $(2^k - 1) \binom{N}{k}$. Among these, the number of (k-1)-clauses not satisfied by (x_2, x_3, \ldots, x_N) is $\binom{N-1}{k-1}$.

Hence, the required probability is,

$$p = \frac{\binom{N-1}{k-1}}{(2^k - 1)\binom{N}{k}} = \frac{k}{N(2^k - 1)}.$$

Claim 3 The probability that the variable x_1 is constrained by at least one of the M clauses, given that all these clauses are satisfied by \mathbf{x} is $q = 1 - (1 - p)^M$.

Proof: Proof follows from claim 2 and the independence of the M clauses.

Claim 4 Let A_i be the event that x_i is constrained by at least one of the M clauses. Then,

$$\mathbf{P}\left[\bigcap_{i=1}^{L} \mathcal{A}_{i} \mid all \ clauses \ are \ satisfied \ by \ \mathbf{x}\right] \leq \prod_{i=1}^{L} \mathbf{P}[\mathcal{A}_{i}| \ all \ clauses \ are \ satisfied \ by \ \mathbf{x}] = q^{L}.$$

Exercise 7 (1 or 2 points inversely proportional to proof length) Prove claim 4.

Now we go to the proof of lemma 4.

Proof: For L = 1, 2, ..., N, define $\mathbf{z}_L = (\underbrace{0, 0, ..., 0}_{L}, \underbrace{1, 1, ..., 1}_{N-L}).$

$$\mathbf{E} \left[U(\psi) \right] = \sum_{\mathbf{x} \in \{0,1\}^N} \mathbf{P} \left[\psi \text{ is SAT by } \mathbf{x} \right] \cdot \mathbf{P} \left[\mathbf{x} \text{ is LMS for } \psi \mid \psi \text{ is SAT by } \mathbf{x} \right]$$
$$= \sum_{L=0}^N (1 - 2^{-k})^M \binom{N}{L} \mathbf{P} \left[\mathbf{z}_L \text{ is LMS for } \psi \mid \psi \text{ is SAT by } \mathbf{z}_L \right]$$
$$\leq (1 - 2^{-k})^M \sum_{L=0}^N \binom{N}{L} q^L$$
$$= (1 - 2^{-k})^M (1 + q)^N.$$

2 SAT lower bounds

Two main strategies have been used to derive lower bounds of the satisfiability threshold: Algorithmic approach and Second Moment approach.

The first approach consists in analyzing explicit heuristic algorithms for finding SAT assignments. The idea is to prove that a particular algorithm finds a SAT assignment with finite probability as $N \to \infty$ when α is smaller than some value. One of the simplest such bounds is obtained by considering *unit clause propagation algorithm*. Before going to that we present a trivial lower bound of the satisfiability threshold.

2.1 Trivial Lower bound

Exercise 8 (0.1 point) Show that if $k_1 < k_2$ then we have, $P_N(k_1, \alpha) \leq P_N(k_2, \alpha)$.

Using this with the fact that $\lim_{N\to\infty} P_N(2,\alpha) = 1 \,\forall \,\alpha < 1$, we have,

Corollary 9 For all $k \ge 2$ if $\alpha < 1$, then $P_N(k, \alpha) \to 1$ as $N \to \infty$.

2.2 Unit Clause Propagation Algorithm

Input: A SAT formula ψ with varying size clauses.

Output: "A solution exists" or "Cannot determine whether a solution exists".

Algorithm:

- If there are any unit clauses, pick a unit clause uniformly at random, satisfy it and simplify ψ to obtain ψ' .
- Otherwise pick a variable uniformly at random, assign it a value 0/1 uniformly at random and simplify ψ to obtain ψ' .
- Run the algorithm on ψ' .
- If there is an empty clause, output "cannot determine whether a solution exists".
- otherwise output "a solution exists".

Theorem 10 For the $SAT_N(k, \alpha N)$ ensemble if

$$\alpha < \frac{1}{2} \left(\frac{k-1}{k-2}\right)^{k-2} \frac{2^k}{k},$$

then for some $\epsilon_{\alpha}(k) > 0$ the probability that the algorithm outputs "a solution exists" is greater that $\epsilon_{\alpha}(k)$ in the limit $N \to \infty$.

Note that this gives a lower bound on the satisfiability threshold, by the following corollary of Friedgut's theorem.

Corollary 11 Let $k \ge 2$. If α is such that $\liminf_{N\to\infty} P_N(k,\alpha) > 0$ then for any $\delta \in (0,\alpha)$,

$$\lim_{N \to \infty} P_N(k, \alpha - \delta) = 1.$$

Idea of the proof: After t-steps the formula will contain k-clauses, (k-1)-clauses, ... and 1-clauses. Denote by $C_j(t)$ the set of j-clauses, j = 1, 2, ..., k and by $c_j(t) = |C_j(t)|$ its size. The main steps are as follows.

- Show that at each step t, each clause in $C_j(t)$ is uniformly distributed.
- Analyze expected change in $c_j(t), j = k, k 1, \dots, 1$ over t.
- Show as $N \to \infty$ at fixed s = t/N, the variables $c_j(t)/N, j \ge 2$ concentrate around their means and they converge to smooth functions that satisfy some differential equations.
- Solve the equations and show that number of 1-clauses remain small.
- Show that the probability for an empty clause to appear is bounded away from 1 if α is smaller than some number.