STAT 206A: Gibbs Measures Elchanan Mossel

Lecture 7

Lecture date: Sept. 19 Scribe: Partha S. Dey

In the previous lecture, using first moment argument on number of SAT assignments of a
random k-SAT formula we proved the following theorem.

Theorem 1 Let Py (k,«) be the probability that a random formula from SATN(k, M = aN)
ensemble is SAT. If log2 + alog(1 — 27%) < 0, then

Py (k,a) = 0 as N — oo.

In today’s lecture, instead of considering the set of all SAT assignments(that may have large
cardinality for certain instantiation of the random formula), we consider a subset of it by
taking SAT assignments that satisfy a local maximality criteria.

1 Locally Maximal Satisfying (LMS) Assignments

Definition 2 For a SAT formula ¢ on N wvariables, an assignment x = (x1,22,...,%,) €
{0,1}" is called a Locally Maximal Satisfying (LMS) assignment for v if

1. x satisfies ©, i.e. Y(x) =1 and

2. any assignment obtained from x by changing exactly one 0 value to 1 does not satisfy

.
The following claim immediately follows from the definition.
Claim 1 If v is satisfiable then there exists a LMS for 1.

Proof: Consider the set of all assignments that satisfy . This set is finite and non-
empty. Take an assignment in this set with smallest number of 0’s. That is clearly a LMS
assignment for . O

Definition 3 For a SAT formula v, define,

U(v) = Total number of LMS assignments for 1.

7-1



Lemma 4 Let ¢ be a random formula from the SATn(k, M) ensemble, where M = aN
for some a > 0. Then an upper bound for the expected value of the random variable U (1))
s given by,

E[U(y)] < (1+¢)"(1-275M,

where ¢ =1 — (1 —p)™, and p = k/[N(2F — 1)].

Before going to the proof of lemma 4, we state a corollary which gives a better upper bound
on the satisfiability threshold than the one given in theorem 1.

Corollary 5 For any k > 2, let o be the unique positive solution of the equation:

f(a) = alog(l —27%) +log [1 - exp<2;k_0‘1>] =0. (1)

Then limy oo Py(k,a) =0 if a > .

Exercise 6 (1 point) Prove that equation (1) has a unique positive solution (Note that 0
is always a solution of (1)).

Proof: Assuming that the positive solution a* of f(a) = 0 is unique, it is easy to check
that f(a) < 0 for @ > a*. Now note that,

(1-p)M = (1 - N(zf_l))a]v = exp [—Qkaf 1] +o(1).

Hence, using lemma 4 and the fact that ¢ is SAT iff U(¢)) > 1, we have

Py (k,a) = P(¢) is SAT) = P(U () > 1)
< E[U(¥)
<@-27R)M14qN

= [(1 — 27k <]2V— exp [—2,:1]_{1] + 0(1)>] )
- [ef(a) -1—0(1)]

N—oo .
— 0, if a > a*.

a

Let us consider an assignment x where exactly L variables are set to 0 and the remaining
N — L variables are set to 1. Without loss of generality, assume ©1 = 2o = --- = xp = 0,
a;L+1:-~-:xN:1.
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Claim 2 The probability that a random clause constrains the variable x1, given that the
clause is satisfied by the assignment x is p = k/[N(2F — 1)].

Proof: Total number of k-clauses satisfied by x is (2F — 1)(]]:,[ ). Among these, the number
of (k — 1)-clauses not satisfied by (z2,x3,...,zN) is (]Z__ll)

Hence, the required probability is,

Claim 3 The probability that the variable x1 is constrained by at least one of the M clauses,
given that all these clauses are satisfied by x is g =1 — (1 — p)M.

Proof: Proof follows from claim 2 and the independence of the M clauses. O

Claim 4 Let A; be the event that z; is constrained by at least one of the M clauses. Then,

L L
P ﬂ A; | all clauses are satisfied by x| < HP[.A1-| all clauses are satisfied by x] = q*.
i=1 i=1

Exercise 7 (1 or 2 points inversely proportional to proof length) Prove claim 4.

Now we go to the proof of lemma 4.

Proof: For L =1,2,..., N, define z;, = (0,0,...,0,1,1,...,1).
L N-L

E[U®W)] = Z P [y is SAT by x| - P [x is LMS for ¢ | ¢ is SAT by x]
x€{0,1}V
al N
= Z(l - 2k)M(L)P [zg, is LMS for ¢ | 1 is SAT by zj]
L=0
N
< (1—9 kM <N> L
( ) Lz% )4
— (-2 RV (14 )V,



2 SAT lower bounds

Two main strategies have been used to derive lower bounds of the satisfiability threshold:
Algorithmic approach and Second Moment approach.

The first approach consists in analyzing explicit heuristic algorithms for finding SAT as-
signments. The idea is to prove that a particular algorithm finds a SAT assignment with
finite probability as N — co when « is smaller than some value. One of the simplest such
bounds is obtained by considering unit clause propagation algorithm. Before going to that
we present a trivial lower bound of the satisfiability threshold.

2.1 Trivial Lower bound
Exercise 8 (0.1 point) Show that if k1 < ko then we have, Pn(ki,a) < Pn(ks, ).

Using this with the fact that limy_, Pn(2,a) =1V a < 1, we have,

Corollary 9 For allk > 2 if « < 1, then Py(k,a) = 1 as N — co.

2.2 Unit Clause Propagation Algorithm

Input: A SAT formula ¢ with varying size clauses.
Output: “A solution exists” or “Cannot determine whether a solution exists”.
Algorithm:
e If there are any unit clauses, pick a unit clause uniformly at random, satisfy it and
simplify v to obtain 1)’.

e Otherwise pick a variable uniformly at random, assign it a value 0/1 uniformly at
random and simplify v to obtain .

e Run the algorithm on ).
e If there is an empty clause, output “cannot determine whether a solution exists”.

e otherwise output “a solution exists”.

Theorem 10 For the SATN(k,aN) ensemble if

(T2
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then for some €,(k) > 0 the probability that the algorithm outputs “a solution exists” is
greater that €, (k) in the limit N — oo.

Note that this gives a lower bound on the satisfiability threshold, by the following corollary
of Friedgut’s theorem.

Corollary 11 Letk > 2. If « is such that liminf . Py (k, ) > 0 then for any 6 € (0, @),

lim Py(k,a—9¢)=1.

N—oo

Idea of the proof: After t-steps the formula will contain k-clauses, (k — 1)-clauses, ...
and 1-clauses. Denote by C;(t) the set of j-clauses, j = 1,2,...,k and by ¢;(t) = |C;(t)]| its
size. The main steps are as follows.

e Show that at each step ¢, each clause in C;(t) is uniformly distributed.

e Analyze expected change in ¢;(t),j = k,k—1,...,1 over t.

e Show as N — oo at fixed s = t/N, the variables ¢;(t)/N,j > 2 concentrate around
their means and they converge to smooth functions that satisfy some differential
equations.

e Solve the equations and show that number of 1-clauses remain small.

e Show that the probability for an empty clause to appear is bounded away from 1 if «
is smaller than some number.



