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In the previous lecture, using first moment argument on number of SAT assignments of a
random k-SAT formula we proved the following theorem.

Theorem 1 Let PN (k, α) be the probability that a random formula from SATN (k,M = αN)
ensemble is SAT. If log 2 + α log(1− 2−k) < 0, then

PN (k, α) → 0 as N →∞.

In today’s lecture, instead of considering the set of all SAT assignments(that may have large
cardinality for certain instantiation of the random formula), we consider a subset of it by
taking SAT assignments that satisfy a local maximality criteria.

1 Locally Maximal Satisfying (LMS) Assignments

Definition 2 For a SAT formula ψ on N variables, an assignment x = (x1, x2, . . . , xn) ∈
{0, 1}n is called a Locally Maximal Satisfying (LMS) assignment for ψ if

1. x satisfies ψ, i.e. ψ(x) = 1 and

2. any assignment obtained from x by changing exactly one 0 value to 1 does not satisfy
ψ.

The following claim immediately follows from the definition.

Claim 1 If ψ is satisfiable then there exists a LMS for ψ.

Proof: Consider the set of all assignments that satisfy ψ. This set is finite and non-
empty. Take an assignment in this set with smallest number of 0’s. That is clearly a LMS
assignment for ψ. 2

Definition 3 For a SAT formula ψ, define,

U(ψ) = Total number of LMS assignments for ψ.
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Lemma 4 Let ψ be a random formula from the SATN (k,M) ensemble, where M = αN
for some α > 0. Then an upper bound for the expected value of the random variable U(ψ)
is given by,

E[U(ψ)] ≤ (1 + q)N (1− 2−k)M ,

where q = 1− (1− p)M , and p = k/[N(2k − 1)].

Before going to the proof of lemma 4, we state a corollary which gives a better upper bound
on the satisfiability threshold than the one given in theorem 1.

Corollary 5 For any k ≥ 2, let α∗ be the unique positive solution of the equation:

f(α) ≡ α log(1− 2−k) + log
[
1− exp

(
−kα

2k − 1

)]
= 0. (1)

Then limN→∞ PN (k, α) = 0 if α > α∗.

Exercise 6 (1 point) Prove that equation (1) has a unique positive solution (Note that 0
is always a solution of (1)).

Proof: Assuming that the positive solution α∗ of f(α) = 0 is unique, it is easy to check
that f(α) < 0 for α > α∗. Now note that,

(1− p)M =
(

1− k

N(2k − 1)

)αN

= exp
[
− αk

2k − 1

]
+ o(1).

Hence, using lemma 4 and the fact that ψ is SAT iff U(ψ) ≥ 1, we have

PN (k, α) = P(ψ is SAT) = P(U(ψ) ≥ 1)
≤ E[U(ψ)]

≤ (1− 2−k)M (1 + q)N

=
[
(1− 2−k)α

(
2− exp

[
− αk

2k − 1

]
+ o(1)

)]N

=
[
ef(α) + o(1)

]N

N→∞−→ 0, if α > α∗.

2

Let us consider an assignment x where exactly L variables are set to 0 and the remaining
N − L variables are set to 1. Without loss of generality, assume x1 = x2 = · · · = xL = 0,
xL+1 = · · · = xN = 1.
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Claim 2 The probability that a random clause constrains the variable x1, given that the
clause is satisfied by the assignment x is p = k/[N(2k − 1)].

Proof: Total number of k-clauses satisfied by x is (2k − 1)
(
N
k

)
. Among these, the number

of (k − 1)-clauses not satisfied by (x2, x3, . . . , xN ) is
(
N−1
k−1

)
.

Hence, the required probability is,

p =

(
N−1
k−1

)
(2k − 1)

(
N
k

) =
k

N(2k − 1)
.

2

Claim 3 The probability that the variable x1 is constrained by at least one of the M clauses,
given that all these clauses are satisfied by x is q = 1− (1− p)M .

Proof: Proof follows from claim 2 and the independence of the M clauses. 2

Claim 4 Let Ai be the event that xi is constrained by at least one of the M clauses. Then,

P

[
L⋂

i=1

Ai | all clauses are satisfied by x

]
≤

L∏
i=1

P[Ai| all clauses are satisfied by x] = qL.

Exercise 7 ( 1 or 2 points inversely proportional to proof length) Prove claim 4.

Now we go to the proof of lemma 4.

Proof: For L = 1, 2, . . . , N , define zL = (0, 0, . . . , 0︸ ︷︷ ︸
L

, 1, 1, . . . , 1︸ ︷︷ ︸
N−L

).

E [U(ψ)] =
∑

x∈{0,1}N

P [ψ is SAT by x] ·P [x is LMS for ψ | ψ is SAT by x]

=
N∑

L=0

(1− 2−k)M

(
N

L

)
P [zL is LMS for ψ | ψ is SAT by zL]

≤ (1− 2−k)M
N∑

L=0

(
N

L

)
qL

= (1− 2−k)M (1 + q)N .

2
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2 SAT lower bounds

Two main strategies have been used to derive lower bounds of the satisfiability threshold:
Algorithmic approach and Second Moment approach.

The first approach consists in analyzing explicit heuristic algorithms for finding SAT as-
signments. The idea is to prove that a particular algorithm finds a SAT assignment with
finite probability as N →∞ when α is smaller than some value. One of the simplest such
bounds is obtained by considering unit clause propagation algorithm. Before going to that
we present a trivial lower bound of the satisfiability threshold.

2.1 Trivial Lower bound

Exercise 8 (0.1 point) Show that if k1 < k2 then we have, PN (k1, α) ≤ PN (k2, α).

Using this with the fact that limN→∞ PN (2, α) = 1 ∀ α < 1, we have,

Corollary 9 For all k ≥ 2 if α < 1, then PN (k, α) → 1 as N →∞.

2.2 Unit Clause Propagation Algorithm

Input: A SAT formula ψ with varying size clauses.

Output: “A solution exists” or “Cannot determine whether a solution exists”.

Algorithm:

• If there are any unit clauses, pick a unit clause uniformly at random, satisfy it and
simplify ψ to obtain ψ′.

• Otherwise pick a variable uniformly at random, assign it a value 0/1 uniformly at
random and simplify ψ to obtain ψ′.

• Run the algorithm on ψ′.

• If there is an empty clause, output “cannot determine whether a solution exists”.

• otherwise output “a solution exists”.

Theorem 10 For the SATN (k, αN) ensemble if

α <
1
2

(
k − 1
k − 2

)k−2 2k

k
,
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then for some εα(k) > 0 the probability that the algorithm outputs “ a solution exists” is
greater that εα(k) in the limit N →∞.

Note that this gives a lower bound on the satisfiability threshold, by the following corollary
of Friedgut’s theorem.

Corollary 11 Let k ≥ 2. If α is such that lim infN→∞ PN (k, α) > 0 then for any δ ∈ (0, α),

lim
N→∞

PN (k, α− δ) = 1.

Idea of the proof: After t-steps the formula will contain k-clauses, (k − 1)-clauses, . . .
and 1-clauses. Denote by Cj(t) the set of j-clauses, j = 1, 2, . . . , k and by cj(t) = |Cj(t)| its
size. The main steps are as follows.

• Show that at each step t, each clause in Cj(t) is uniformly distributed.

• Analyze expected change in cj(t), j = k, k − 1, . . . , 1 over t.

• Show as N → ∞ at fixed s = t/N , the variables cj(t)/N, j ≥ 2 concentrate around
their means and they converge to smooth functions that satisfy some differential
equations.

• Solve the equations and show that number of 1-clauses remain small.

• Show that the probability for an empty clause to appear is bounded away from 1 if α
is smaller than some number.
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