STAT 206A: Gibbs Measures

Lecture 6: Random k-SAT problems

Lecture date: Sept 14

Scribe: Guillaume Obozinski

Elchanan Mossel

Definition 1 (SAT_N(k, α)) is a random k-SAT formula ψ on N variables where each possible clause is chosen independently with probability $\frac{\alpha N}{2^k \binom{N}{k}}$

Theorem 2 (Friedgut) Suppose $k \ge 2$. Let $P_N(k, \alpha) = \mathbf{P}(SAT_N(k, \alpha) \text{ is } SAT)$.

$$\exists \alpha_c(N), \quad \forall \epsilon > 0, \quad \left\{ \begin{array}{l} P_N(k, \alpha_c(N) + \epsilon) \to 0\\ P_N(k, \alpha_c(N) - \epsilon) \to 1 \end{array} \right.$$

1 Random 2-SAT and 2-XOR-SAT

Theorem 3

$$\lim_{N} P_N(k=2,\alpha) = \begin{cases} 1, & \alpha < 1\\ 0, & \alpha > 1 \end{cases}$$

Proof: We won't prove this. The probability of the formula being unsatisfiable may be expressed in terms of the directed graph associated with the formula as: $\mathbf{P}(\exists i | x_i \to \bar{x}_i, \bar{x}_i \to x_i)$. The proof of the theorem follows by analyzing this probability. \Box

We consider the simpler:

Definition 4 (XOR-SAT_N(2, α)) is a random XOR-SAT problem where, given the choice of a pair of variables, the two possible constraints are $x_i \oplus x_j = 0$ and $x_i \oplus x_j = 1$ and each of the clauses are drawn independently with probability $\frac{\alpha N}{2\binom{N}{2}}$. We denote by $\lim P_N^X(k = 2, \alpha)$ the probability that a random XOR-SAT_N(2, α) formula is satisfiable.

Theorem 5

$$\lim P_N^X(k=2,\alpha) = \begin{cases} >0, & \alpha < \frac{1}{2} \\ 0, & \alpha > \frac{1}{2} \end{cases}$$

Proof: We will prove the theorem by considering the random graph on the vertex set x_1, \ldots, x_n , where an edge is present between x_i and x_j if the equation $x_i \oplus x_j = c_{i,j}$ is part of the 2 - XOR - SAT formula.

6: Random k-SAT problems-1

Consider first the case $\alpha > 1/2$. In this case from the theory of random graph we know that with high probability there is a $\Omega(n)$ number of vertices belonging to cycles of length $O(\log n)$. This implies in particular, that w.h.p. there are $\Omega(n/\log n)$ disjoint cycles. The probability of each cycle being satisfiable is 1/2 by Claim 6. Therefore, the probability that the formula is satisfiable goes to 0 as $N \to \infty$.

Now consider $\alpha < 1/2$. Note first that $\forall \alpha \ P_N(k=2,\alpha) \not\rightarrow 1$ since

$$\mathbf{P}(\exists (i,j), x_i \oplus x_j = 0 \text{ and } x_i \oplus x_j = 1 \text{ are both in } \psi) \to e^{-\frac{\alpha^2}{2}}$$

However, it still holds that for $\alpha < 1$, the formula is satisfiable with positive probability as we now prove. By Claim 6 ψ is UNSAT iff there is a cycle with an odd number of $x_i \oplus \bar{x}_i = 1$ constraints and since by Claim 7, for $\alpha < 1/2$, with positive probability none of these cycles have any $x_i \oplus \bar{x}_i = 1$ constraint. These two claims together imply that ψ has to be SAT with positive probability. \Box

Claim 6 ψ is UNSAT iff there exists a cycle $(i_1, i_2, ..., i_J)$ s.t.

$$\begin{cases} \forall j, \quad x_{i_j} \oplus x_{i_{j+1}} = a_{i_j, i_{j+1}} \\ \bigoplus_{j=1}^J a_{i_j, i_{j+1}} = 1 \end{cases}$$

Proof: If such a cycle exists then summing shows that ψ is UNSAT. Conversely ψ is UNSAT if the linear system of equations is over-constrained, it gaussian elimination must eliminate all the variables leaving an equation impossible to satisfy, eliminating all variables is only possible with a cycle and then the sum of the RHS must be 1. \Box

Claim 7 Suppose $\alpha < 1/2$ then There exist $C_1(\alpha), C_2(\alpha)$ so that with probability greater than 0.9

- The total number of cycles is less than $C_1(\alpha)$
- All cycles are of length less than $C_2(\alpha)$
- With positive probability independent of N, no cycle has any $(x_i \oplus \bar{x}_i = 1)$ constraint.

Proof:

• There are at most $\frac{N(N-1)...(N-k+1)}{k}$ possible cycles of length k

• Each is present with probability
$$\left(2\frac{\alpha N}{2\binom{N}{2}}\right)^k = \left(\frac{\alpha}{N-1}\right)^k$$
.

6: Random k-SAT problems-2

- So $\mathbf{E}(\sharp cycles \ of \ length \ k) \leq \alpha^k$
- Thus $\mathbf{E}(\sharp cycles) \leq \frac{1}{1-\alpha}$
- If $C_1(\alpha)$ is chosen s.t $\sum_{k>C_1(\alpha)} \alpha^k < 0.1$, then $\mathbf{P}(\exists \ a \ cycle \ of \ length > C) \leq \mathbf{E}(\sharp cycles \ of \ length > C) \leq \sum_{k>C} \alpha^k < 0.1$
- By Markov's inequality, with $C_2(\alpha) = \frac{10}{1-\alpha}$, $\mathbf{P}(\sharp cycles > C_2(\alpha)) < \frac{\mathbf{E}(\sharp cycles)}{C_2(\alpha)} < 0.1$
- Given that an edge (x_i, x_j) is present the probability that the only corresponding clause present is (x_i ⊕ x_j = 0) is at least ¼. This follows since w.h.p. there is no clause chosen 3 or more times.
 So with probability at least 4^{-C₁(α)C₂(α)} all cycles are without (x_i ⊕ x̄_i=1) constraint.

2 Random 3-SAT

Algorithm 1 The k-SAT random walk algorithm

choose x_0 uniformly at random while $\psi(x^t) = 0$ do choose an UNSAT clause at random choose randomly one of the literals z_i flip x_i^t to obtain x_i^{t+1} end while

Claim 8 Assume $\exists y, \psi(y) = 1$ and $\psi(x^t) = 0$ then

$$\mathbf{P}(d_H(x^{t+1}, y) = d_H(x^t, y) - 1) \ge \frac{1}{k}$$

Exercise 9 Prove that the expected time to hit y is $O\left(\frac{2(k+1)^N}{k}\right)$

Claim 10 $SAT_N(k, M = \alpha M)$ is UNSAT with high probability if $\alpha > \frac{-\log 2}{\log(1-2^k)}$ **Proof:** Let $z[\psi] = \sharp$ of SAT assignments.

$$\mathbf{E}[Z] = 2^{N} \mathbf{P}(\mathbf{0} \text{ satisfies } \psi) = 2^{N} (1 - 2^{-k})^{\alpha N} = \exp(N(\log 2 + \alpha \log(1 - 2^{-k})))$$

Note that here again we assumed that the number of clauses if fixed. Since the number of clauses is concentrated around its mean, the claim also holds for $SAT_N(k, \alpha)$. \Box

Exercise 11 Show that the first moment method applied to $SAT_N(k, \alpha)$ gives the bound $\alpha > 2^k \log 2$