Definition 1 \((\text{SAT}_N(k, \alpha))\) is a random \(k\)-SAT formula \(\psi\) on \(N\) variables where each possible clause is chosen independently with probability \(\frac{\alpha N}{2^k N\choose k}\).

Theorem 2 (Friedgut) Suppose \(k \geq 2\). Let \(P_N(k, \alpha) = P(\text{SAT}_N(k, \alpha) \text{ is SAT})\).

\[\exists \alpha_c(N), \quad \forall \epsilon > 0, \quad \begin{cases} P_N(k, \alpha_c(N) + \epsilon) \to 0 \\ P_N(k, \alpha_c(N) - \epsilon) \to 1 \end{cases}\]

1 Random 2-SAT and 2-XOR-SAT

Theorem 3

\[\lim_N P_N(k = 2, \alpha) = \begin{cases} 1, & \alpha < 1 \\ 0, & \alpha > 1 \end{cases}\]

Proof: We won’t prove this. The probability of the formula being unsatisfiable may be expressed in terms of the directed graph associated with the formula as: \(P(\exists i | x_i \rightarrow \bar{x}_i, \bar{x}_i \rightarrow x_i)\). The proof of the theorem follows by analyzing this probability. \(\square\)

We consider the simpler:

Definition 4 (\(\text{XOR-SAT}_N(2, \alpha)\)) is a random XOR-SAT problem where, given the choice of a pair of variables, the two possible constraints are \(x_i \oplus x_j = 0\) and \(x_i \oplus x_j = 1\) and each of the clauses are drawn independently with probability \(\frac{\alpha N}{2^2 N\choose 2}\). We denote by \(\lim P_N^X(k = 2, \alpha)\) the probability that a random XOR-SAT\(_N(2, \alpha)\) formula is satisfiable.

Theorem 5

\[\lim P_N^X(k = 2, \alpha) = \begin{cases} > 0, & \alpha < \frac{1}{2} \\ 0, & \alpha > \frac{1}{2} \end{cases}\]

Proof: We will prove the theorem by considering the random graph on the vertex set \(x_1, \ldots, x_n\), where an edge is present between \(x_i\) and \(x_j\) if the equation \(x_i \oplus x_j = c_{i,j}\) is part of the \(2 - \text{XOR - SAT}\) formula.
Consider first the case \(\alpha > \frac{1}{2} \). In this case from the theory of random graph we know that with high probability there is a \(\Omega(n) \) number of vertices belonging to cycles of length \(O(\log n) \). This implies in particular, that w.h.p. there are \(\Omega(n/\log n) \) disjoint cycles. The probability of each cycle being satisfiable is \(1/2 \) by Claim 6. Therefore, the probability that the formula is satisfiable goes to 0 as \(N \to \infty \).

Now consider \(\alpha < 1/2 \). Note first that \(\forall \alpha \ P_N(k = 2, \alpha) \not\to 1 \) since

\[
P(\exists(i, j), x_i \oplus x_j = 0 \text{ and } x_i \oplus x_j = 1 \text{ are both in } \psi) \to e^{-\frac{\alpha^2}{2}}
\]

However, it still holds that for \(\alpha < 1 \), the formula is satisfiable with positive probability as we now prove. By Claim 6 \(\psi \) is UNSAT iff there is a cycle with an odd number of \(x_i \oplus \bar{x}_i = 1 \) constraints and since by Claim 7, for \(\alpha < 1/2 \), with positive probability none of these cycles have any \(x_i \oplus \bar{x}_i = 1 \) constraint. These two claims together imply that \(\psi \) has to be SAT with positive probability. \(\square \)

Claim 6 \(\psi \) is UNSAT iff there exists a cycle \((i_1, i_2, ..., i_J)\) s.t.

\[
\begin{align*}
\forall j, & \ x_{ij} \oplus x_{ij+1} = a_{ij, ij+1} \\
\bigoplus_{j=1}^{J} & a_{ij, ij+1} = 1
\end{align*}
\]

Proof: If such a cycle exists then summing shows that \(\psi \) is UNSAT. Conversely \(\psi \) is UNSAT if the linear system of equations is over-constrained, ie gaussian elimination must eliminate all the variables leaving an equation impossible to satisfy, eliminating all variables is only possible with a cycle and then the sum of the RHS must be 1. \(\square \)

Claim 7 Suppose \(\alpha < 1/2 \) then There exist \(C_1(\alpha), C_2(\alpha) \) so that with probability greater than 0.9

- The total number of cycles is less than \(C_1(\alpha) \)
- All cycles are of length less than \(C_2(\alpha) \)
- With positive probability independent of \(N \), no cycle has any \((x_i \oplus \bar{x}_i = 1)\) constraint.

Proof:

- There are at most \(\frac{N(N-1)\ldots(N-k+1)}{k} \) possible cycles of length \(k \)
- Each is present with probability \(\left(\frac{2\frac{\alpha N}{2}}{\binom{\alpha N}{2}} \right)^k = \left(\frac{\alpha}{N-1} \right)^k \).
• So $E(\sharp \text{cycles of length } k) \leq \alpha^k$

• Thus $E(\sharp \text{cycles}) \leq \frac{1}{1-\alpha}$

• If $C_1(\alpha)$ is chosen s.t. $\sum_{k>C_1(\alpha)} \alpha^k < 0.1$, then $P(\exists \text{ a cycle of length } > C) \leq E(\sharp \text{cycles of length } > C) \leq \sum_{k>C} \alpha^k < 0.1$

• By Markov's inequality, with $C_2(\alpha) = \frac{10}{1-\alpha}$, $P(\sharp \text{cycles } > C_2(\alpha)) < \frac{E(\sharp \text{cycles})}{C_2(\alpha)} < 0.1$

• Given that an edge (x_i, x_j) is present the probability that the only corresponding clause present is $(x_i \oplus x_j = 0)$ is at least $\frac{1}{4}$. This follows since w.h.p. there is no clause chosen 3 or more times. So with probability at least $4^{-C_1(\alpha)C_2(\alpha)}$ all cycles are without $(x_i \oplus \bar{x_i} = 1)$ constraint.

\[\square\]

2 Random 3-SAT

Algorithm 1

The k-SAT random walk algorithm

```plaintext
choose $x_0$ uniformly at random

while $\psi(x^t) = 0$

choose an UNSAT clause at random
choose randomly one of the literals $z_i$
flip $x^t_i$ to obtain $x^{t+1}_i$

end while
```

Claim 8

Assume $\exists y$, $\psi(y) = 1$ and $\psi(x^t) = 0$ then

$P\left(d_H(x^{t+1}, y) = d_H(x^t, y) - 1\right) \geq \frac{1}{k}$

Exercise 9

Prove that the expected time to hit y is $O\left(\frac{2(k+1)^N}{k}\right)$

Claim 10

$SAT_N(k, M = \alpha M)$ is UNSAT with high probability if $\alpha > \frac{-\log 2}{\log(1-2^{1-N})}$

Proof: Let $z[\psi] = \sharp$ of SAT assignments.

$E[Z] = 2^N P(0 \text{ satisfies } \psi) = 2^N (1 - 2^{-k})^\alpha N = \exp(N(\log 2 + \alpha \log(1 - 2^{-k})))$

Note that here again we assumed that the number of clauses is fixed. Since the number of clauses is concentrated around its mean, the claim also holds for $SAT_N(k, \alpha)$. \[\square\]
Exercise 11 Show that the first moment method applied to $SAT_N(k, \alpha)$ gives the bound
$\alpha > 2^k \log 2$