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Definition 1 (SATN (k, α)) is a random k-SAT formula ψ on N variables where each
possible clause is chosen independently with probability αN
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Theorem 2 (Friedgut) Suppose k ≥ 2. Let PN (k, α) = P(SATN (k, α) is SAT).

∃αc(N), ∀ε > 0,
{
PN (k, αc(N) + ε) → 0
PN (k, αc(N)− ε) → 1

1 Random 2-SAT and 2-XOR-SAT

Theorem 3

lim
N
PN (k = 2, α) =

{
1, α < 1
0, α > 1

Proof: We won’t prove this. The probability of the formula being unsatisfiable may be
expressed in terms of the directed graph associated with the formula as: P(∃i|xi → x̄i, x̄i →
xi). The proof of the theorem follows by analyzing this probability. 2

We consider the simpler:

Definition 4 (XOR-SATN (2, α)) is a random XOR-SAT problem where, given the choice
of a pair of variables, the two possible constraints are xi⊕xj = 0 and xi⊕xj = 1 and each of
the clauses are drawn independently with probability αN
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) . We denote by limPX
N (k = 2, α)

the probability that a random XOR-SATN (2, α) formula is satisfiable.

Theorem 5

limPX
N (k = 2, α) =

{
> 0, α < 1

2
0, α > 1

2

Proof: We will prove the theorem by considering the random graph on the vertex set
x1, . . . , xn, where an edge is present between xi and xj if the equation xi ⊕ xj = ci,j is
part of the 2−XOR− SAT formula.
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Consider first the case α > 1/2. In this case from the theory of random graph we know
that with high probability there is a Ω(n) number of vertices belonging to cycles of length
O(log n). This implies in particular, that w.h.p. there are Ω(n/ log n) disjoint cycles. The
probability of each cycle being satisfiable is 1/2 by Claim 6. Therefore, the probability that
the formula is satisfiable goes to 0 as N →∞.

Now consider α < 1/2. Note first that ∀α PN (k = 2, α) 9 1 since

P(∃(i, j), xi ⊕ xj = 0 and xi ⊕ xj = 1 are both in ψ) → e−
α2

2

.
However, it still holds that for α < 1, the formula is satisfiable with positive probability as
we now prove. By Claim 6 ψ is UNSAT iff there is a cycle with an odd number of xi⊕ x̄i =1
constraints and since by Claim 7, for α < 1/2, with positive probability none of these cycles
have any xi⊕ x̄i =1 constraint. These two claims together imply that ψ has to be SAT with
positive probability. 2

Claim 6 ψ is UNSAT iff there exists a cycle (i1, i2, ..., iJ) s.t.{
∀j, xij ⊕ xij+1 = aij ,ij+1⊕J

j=1 aij ,ij+1 = 1

Proof: If such a cycle exists then summing shows that ψ is UNSAT. Conversely ψ is
UNSAT if the linear system of equations is over-constrained, ie gaussian elimination must
eliminate all the variables leaving an equation impossible to satisfy, eliminating all variables
is only possible with a cycle and then the sum of the RHS must be 1. 2

Claim 7 Suppose α < 1/2 then There exist C1(α), C2(α) so that with probability greater
than 0.9

• The total number of cycles is less than C1(α)

• All cycles are of length less than C2(α)

• With positive probability independent of N, no cycle has any (xi ⊕ x̄i =1) constraint.

Proof:

• There are at most N(N−1)...(N−k+1)
k possible cycles of length k

• Each is present with probability

(
2 αN

2
(
N
2

)
)k

=
(

α
N−1

)k
.
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• So E(]cycles of length k) ≤ αk

• Thus E(]cycles) ≤ 1
1−α

• If C1(α) is chosen s.t
∑

k>C1(α) α
k < 0.1, then

P(∃ a cycle of length > C) ≤ E(]cycles of length > C) ≤
∑

k>C α
k < 0.1

• By Markov’s inequality, with C2(α) = 10
1−α , P(]cycles > C2(α)) < E(]cycles)

C2(α) < 0.1

• Given that an edge (xi, xj) is present the probability that the only corresponding clause
present is (xi ⊕ xj = 0) is at least 1

4 . This follows since w.h.p. there is no clause
chosen 3 or more times.
So with probability at least 4−C1(α)C2(α) all cycles are without (xi ⊕ x̄i =1) constraint.

2

2 Random 3-SAT

Algorithm 1 The k-SAT random walk algorithm
choose x0 uniformly at random
while ψ(xt) = 0 do

choose an UNSAT clause at random
choose randomly one of the literals zi
flip xt

i to obtain xt+1
i

end while

Claim 8 Assume ∃y, ψ(y) = 1 and ψ(xt) = 0 then

P( dH(xt+1, y) = dH(xt, y)−1 ) ≥ 1
k

Exercise 9 Prove that the expected time to hit y is O
(

2(k+1)N

k

)
Claim 10 SATN (k,M = αM) is UNSAT with high probability if α > − log 2

log(1−2k)

Proof: Let z[ψ] = ] of SAT assignments.

E[Z] = 2NP(0 satisfies ψ) = 2N (1− 2−k)αN = exp(N(log 2 + α log(1− 2−k)))

.

Note that here again we assumed that the number of clauses if fixed. Since the number of
clauses is concentrated around its mean, the claim also holds for SATN (k, α). 2
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Exercise 11 Show that the first moment method applied to SATN (k, α) gives the bound
α > 2k log 2
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