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This is a guest lecture by Andrea Montanari (ENS Paris and Stanford) on the Random
Energy Model (REM) in physics.

1 Disordered Models

In this lecture, we consider so-called disordered models in statistical physics. These are
particle systems where the energy function is random. Therefore, we have two levels of
randomness. We use the notation E,P to denote averaging with respect to the energy
and we use the notation 〈 · 〉 to denote averaging with respect to the (random) Boltzmann
distribution.

The state space is {0, 1}N which we sometimes denote equivalently {1, . . . , 2N}. We denote
the (random) energy function E : {0, 1}N → R. Thus, for β ∈ [0,+∞], the Boltzmann
distribution is

p(x) =
1

Z(β)
exp (−βE(x)) ,

where the so-called partition function is

Z(β) =
∑
x

exp (−βE(x)) .

We are interested in the typical properties of p under P.

Example: Random k-SAT. Let F : {0, 1}N → {0, 1} be a Boolean function in k-CNF
form. For example, F (x) = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x̄4). Let

EF (x) = #{clauses violated by x}, (1)

which we think of as an energy function. Imagine that we pick F uniformly at random over
all k-SAT formulas with N variables and M = αN clauses. In particular, with the energy
in (1), if β = +∞, the Boltzmann distribution is uniform over all satisfying assignments in
F . The first two moments of E under P are easily computed:

E[E(x)] =
αN

2k
,
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and

Cov[E(x), E(y)] = αN(P[x & y violate an arbitrary clause]
−P[x violates an arbitrary clause]P[y violates an arbitrary clause]).

Note that the correlation between two assignments x and y depends only on their Hamming
distance. Note also that both assignments can violate a clause simultaneously only if they
agree on all variables involved. Therefore,

Cov[E(x), E(y)] = Nα

(
1
2k

(1− δ)k − 1
22k

)
≡ Nf(δ),

where the Hamming distance between x and y is Nδ. For large k, the function f is non-
negligible from 0 up to O(k−1).

2 Random Energy Model

The REM was introduced by Derrida [1]. It is defined as follows. Each energy level is an in-
dependent Gaussian with mean 0 and variance N/2, i.e. {E(x)}x∈{0,1}N are i.i.d. N (0, N/2)
and

Cov[E(x), E(y)] =
N

2
1{x = y}.

We follow Derrida’s treatment of the REM [1]. The main quantities we want to compute
are the so-called free energy

FN (β) = − 1
β

log ZN (β),

the internal energy

UN (β) = 〈E(x)〉β =
∂

∂β
[βFN (β)],

and the canonical entropy

SN (β) = H(pβ) = β2 ∂

∂β
FN (β),

where H is the Shannon entropy.

3 Thermodynamic Properties

Using the equivalent state space {1, . . . , 2N}, we compute the number of energy levels in
the interval [Nε, N(ε + δ)]

A(ε, ε + δ) = #{i : Ei ∈ [Nε, N(ε + δ)]},
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which up to subexponential factors is, in expectation,

E[A(ε, ε + δ)] = 2N

∫ ε+δ

ε

√
N

π
e−Nx2

dx
.= eN maxx∈[ε,ε+δ] sQ(x),

where
sQ(x) = log 2− x2.

Let ε∗ =
√

log 2. Note that s is positive on (−ε∗, ε∗). There are two cases of interest:

1. When [ε, ε + δ] ∩ [−ε∗, ε∗] 6= ∅, E[A(ε, ε + δ)] is exponentially large and the random
variable A(ε, ε + δ) is concentrated.

2. When [ε, ε + δ] ∩ [−ε∗, ε∗] = ∅, E[A(ε, ε + δ)] is exponentially small and the random
variable A(ε, ε + δ) is almost surely 0.

Next, we compute the partition function. Let

s(x) =
{

sQ(x), x ∈ [−ε∗, ε∗],
0, o.w.

We have

ZN (β) =
2N∑
i=1

e−βEi .=
∫ +∞

−∞
eN(s(x)−βx)dx

.= eN maxx[s(x)−βx].

To summarize, we can prove the following.

Proposition 1 Let
ϕ(β) = max

x
[s(x)− βx].

Then we have
lim

N→+∞

1
N

log ZN (β) = ϕ(β).

Also,
P[| log ZN −Nϕ| ≥ Nξ] ≤ e−Nξ2/2.

4 The Phase Transition

There is a simple graphical way to compute ϕ(β): find the point on the curve of s(x) with
slope β. See Figure 5.2 in [2]. Therefore, it is easy to show that the free energy density

f(β) = lim
N→+∞

1
N

FN (β) = −ϕ(β)
β

=

{
−β

4 −
log 2

β , β ≤ βc,

−
√

log 2, β > βc,
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where βc = 2
√

log 2. Also, the entropy density is

s(β) = lim
N→+∞

1
N

SN (β) =

{
−β2

4 + log 2, β ≤ βc,
0, β > βc,

and the energy density is

u(β) = lim
N→+∞

1
N

UN (β) =
{
−β

2 , β ≤ βc,
−
√

log 2, β > βc.

There is a phase transition at the point βc which is seen by the discontinuity in the second
derivative of the free energy density. It is a so-called second order phase transition. The
typical behavior in the two phases are:

1. At high temperature, i.e. β ≤ βc, there are exponentially many states with energy
density −β/2 and the Boltzmann distribution is roughly uniform over them.

2. At low temperature, i.e. β > βc, the Boltzmann distribution is concentrated on a
subexponential number of states of lowest energy density −

√
log 2.

5 Low Temperature Regime

In this Section, we consider some more properties of the low temperature regime.

5.1 Ruelle’s Reformulation

A different characterization of the REM in terms of a point process was given by Ruelle [3].
Let ω̄1 ≥ ω̄2 ≥ · · · be a Poisson point process on R+ with intensity mω−1−m for 0 ≤ m < 1.
Consider the random variables

p̄i =
ω̄i∑
j ω̄j

.

Then the values {p̄i}i behave like the large N limit of the Bolztmann distribution of the
REM.

To see this, consider the regime β > βc. As we pointed out before, the Boltzmann distri-
bution is concentrated on a small number of states with energy density roughly −

√
log 2.

Thus, consider the following rescaling of the energy

Ei = −N
√

log 2 + zi.
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By plugging this expression for Ei into the density of a N (0, N/2), it is easy to see that
the zi’s have a density roughly proportional to e−βcz. Now, consider again the original
probabilities of the REM

pi =
ωi∑
j ωj

,

where ωi ∼ e−βczi . Then one can show that in the large N limit, the ωi’s form a Poisson
point process with intensity proportional to ω−1−βc/β . This corresponds to the Ruelle
reformulation with m = βc/β.

Note that this Poisson process has an accumulation point at 0. Also, notice that the larger
β is (i.e. the lower the temperature is), the “fatter” the tail of the process is, indicating
that the Boltzmann distribution is dominated by a few large values.

5.2 Condensation

To quantify further the condensation phenomenon at low temperature, consider the variable

Qx,y =
{

1, if x = y,
0, o.w.,

where x and y are two states. The inverse of the quantity

P[Qx,y = 1] = E

[∑
i

p2
i

]
,

measures the “number of states” on which the Boltzmann distribution is concentrated. Note
that

E

[∑
i

p2
i

]
= E

[∑
i e
−2βEi

Z(β)2

]
= E

[
Z(2β)
Z(β)2

]
.

From our previous calculations for Z, one can derive

lim
N→+∞

P[Qx,y = 1] =

{
0, β ≤ βc,

1− βc

β , β > βc.
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