STAT 206A: Gibbs Measures Elchanan Mossel

Lecture 12
Lecture date: Oct 5 Scribe: Guy Bresler

In the previous lecture we derived an expression for the expected number of codewords
having weight w = pN for a general LDPCxy (A, P) code:
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Recall that E denotes the number of red edges, and F' denotes the total number of edges.
Then E = ¢(F = ENA'(1) with € defined appropriately.

In this lecture we use the saddle point method to derive an approximation to
coeff [leza; qk(z)MPk,zE}, where gr(z) = S((1+2)"+(1—2)") = 3, cen (k)zr. This

T
coefficient counts the number of ways to choose which edges incident to the check nodes are

colored red. The other coeff]...] can be dealt with similarly.

1 Saddle Point Approximation

First, by Cauchy’s Theorem,

kmax

k
max dz F
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where the mtegral runs over any simple closed path containing the origin, and we define

coeff

kmax

1 / /
F(z) = N(DE H Qk(z)A (PP
k=2

Claim 1 Let C, be the simple closed path of radius r in the counter-clockwise direction (i.e.
the path given by z = re® for —m <t < 7). The mazimum of |F(z)| on C, is obtained at
z=r and at z = —r.

Proof: Observe that |g;(z)| obtains its maximum at z = +r. O

Exercise 2 (1.5 points) F : RT — R™ has a unique minimum z, given by solving

Kmaz (1+ 2) - (1- z)k_l
&= Zp’“ L+ 2)F+(1—2)F
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For the exercise, recall the definition pr = kPy/P’(1).

Claim 3 The following inequality holds:

Proof: We will prove the claim for the case were z, is the unique maximum of F(z) on
C.,. The case where —z, is also a maximum is treated similarly.

Let € = N~ (can choose ¢ = N9 for 1/3 < § < 1/2). Choose g(z) so that e9(*) = F(z)
and g(z4) is real. Then ¢'(zx) = 0 and ¢”(z) > 0.

Exercise 4 (1 point) Show that g"(z) > 0 (strictly greater than zero).

Note that we may write

N € it\IN
j{ F(2) ﬁ :/ F(z*e‘) dt+/ dt—|— T F(zee
Cs, —€ _

z  2mi zZeett *e” Zs e”

We first find the contribution from the first integral and then show that the other two
integrals may be neglected.

/E F(Z*ez:t)N (@) (1- 0(6))/6 €N{g(z*)Jr%(176“)2(z*)2+0(t3) dt

e ze€' e Zx

= (1-0(e)) / F(z)N x

—€

/"
exp [Ng(;*) (—sin®t + (1 — cost)® + 2isint(1 — cost)) + NO(t?’)] dt

Zx

dt

Ze ett

N—04 7
© (1— O(e))/ F(z)N exp [Ng (QZ*) (=2 +O(t") + O(t3))}
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with the following steps at each labeled equality:
(a) Using the local expansion of g around z,
(b) The asymptotic notation is used for t — 0. For example, (1 — cost)? = O(t4).
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(¢) Change of variable: ¢ = v/Nt.
(d) The integral is Gaussian (contributing a constant).

7w F(zee') —e F(zee?)N

Next, we show that the integral | Nt may be neglected. The integral [~° ===

€ zxeit
is treated similarly.

In order to bound the integral we bound separately

it\N
/ F(z*eit) it
0m\[0,e]  #x€

it\N
I
0.7\[0,]  #x€

where 7 is some small constant (independent of n) which is chosen so that: for ¢ € ([—n,n]\
[—e€, €]) it holds that

and

"z .
19| = |exp [g(z.) + 2 (2 )(1—et)2+--~]‘
< |exp [g(z) — L )]
- * 4N0-8 */1]
SO
/ Flae™)™ | / Mot e ety ]| dt
a0 Zxe” = oo et

N0.2g”(z*)]> '

=0 <F(z*)N exp [ — .

For t € ([—m, 7]\ [-n, n]) it holds that F(z.e®) < (1—Q(1))F(24) (because F(z,) is a unique
maximum on [—m,7]), SO

F(z. it\IN
/ (Zieit)dt — 0 ((1-Q)NF(z)N).
[~m/2m/2\[-nm]  #+€
Od
Using the saddle point method to approximate the other coeff|...] expression gives the
following;:

Imax / kmax
plp)= swp inf {A’(l)H(é) -~ ploga — N(1€IoB(2) + 3 Atlog(1 + a9/ + it Y- Pilog qk<z>}
k=2

ce{01} 720 =2
2>0
lrnax l A/(l) kmax
_ /
= —plogx — A'(1)log(1 + yz) + ;Al(l +xy') + P(1) kZ_Q Py log qi(2),
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where

lmax kmax -
o= ZAI $yl y= Zkzz PkPk (Z)
l kmax
=1 1+ay k=2 ka,j(z)
_ Xy ey tay)  pe g (4 lEA-2)
Sobme /(1 + ayl) g (L+2)F + (1 —2)*
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