STAT 206A: Gibbs Measures Elchanan Mossel

Lecture 12

Lecture date: Oct 5 Scribe: Guy Bresler

In the previous lecture we derived an expression for the expected number of codewords having weight $w = \rho N$ for a general LDPC_N(Λ, P) code:

$$\bar{W}(w) = \sum_{E=0}^{F} \frac{E!(F-E)!}{F!} \operatorname{coeff} \left[\prod_{l=1}^{l_{\max}} (1+xy^l)^{N\Lambda_l}, x^w y^E \right] \operatorname{coeff} \left[\prod_{k=2}^{k_{\max}} q_k(z)^{MP_k}, z^E \right].$$

Recall that E denotes the number of red edges, and F denotes the total number of edges. Then $E = \xi F = \xi N \Lambda'(1)$ with ξ defined appropriately.

In this lecture we use the saddle point method to derive an approximation to coeff $\left[\prod_{k=2}^{k_{\text{max}}} q_k(z)^{MP_k}, z^E\right]$, where $q_k(z) = \frac{1}{2}\left((1+z)^n + (1-z)^n\right) = \sum_{r \text{ even }} \binom{k}{r} z^r$. This coefficient counts the number of ways to choose which edges incident to the check nodes are colored red. The other coeff[...] can be dealt with similarly.

1 Saddle Point Approximation

First, by Cauchy's Theorem,

$$\operatorname{coeff}\left[\prod_{k=2}^{k_{\max}} q_k(z)^{MP_k}, z^E\right] = \oint \frac{1}{z^{E+1}} \prod_{k=2}^{k_{\max}} q_k(z)^{MP_k} \frac{dz}{2\pi i} = \oint \frac{F(z)^N}{z} \frac{dz}{2\pi i},$$

where the integral runs over any simple closed path containing the origin, and we define

$$F(z) = \frac{1}{z^{\Lambda'(1)\xi}} \prod_{k=2}^{k_{\text{max}}} q_k(z)^{\Lambda'(1)P_k/P'(1)}.$$

Claim 1 Let C_r be the simple closed path of radius r in the counter-clockwise direction (i.e. the path given by $z = re^{it}$ for $-\pi \le t < \pi$). The maximum of |F(z)| on C_r is obtained at z = r and at z = -r.

Proof: Observe that $|q_k(z)|$ obtains its maximum at $z = \pm r$. \square

Exercise 2 (1.5 points) $F: \mathbb{R}^+ \to \mathbb{R}^+$ has a unique minimum z_* given by solving

$$\xi = \sum_{k=2}^{k_{max}} \rho_k z \frac{(1+z)^{k-1} - (1-z)^{k-1}}{1+z)^k + (1-z)^k}.$$

For the exercise, recall the definition $\rho_k = kP_k/P'(1)$.

Claim 3 The following inequality holds:

$$\oint_{C_{z_*}} \frac{F(z)^N}{z} \frac{dz}{2\pi i} \ge \Theta\left(\frac{F(z_*)^N}{\sqrt{N}}\right).$$

Proof: We will prove the claim for the case were z_* is the unique maximum of F(z) on C_{z_*} . The case where $-z_*$ is also a maximum is treated similarly.

Let $\epsilon = N^{-0.4}$ (can choose $\epsilon = N^{-\delta}$ for $1/3 < \delta < 1/2$). Choose g(z) so that $e^{g(z)} = F(z)$ and $g(z_*)$ is real. Then $g'(z_*) = 0$ and $g''(z_*) > 0$.

Exercise 4 (1 point) Show that $g''(z_*) > 0$ (strictly greater than zero).

Note that we may write

$$\oint_{C_{z_{**}}} \frac{F(z)^{N}}{z} \frac{dz}{2\pi i} = \int_{-\epsilon}^{\epsilon} \frac{F(z_{*}e^{it})^{N}}{z_{*}e^{it}} dt + \int_{-\pi}^{-\epsilon} \frac{F(z_{*}e^{it})^{N}}{z_{*}e^{it}} dt + \int_{\epsilon}^{\pi} \frac{F(z_{*}e^{it})^{N}}{z_{*}e^{it}} dt.$$

We first find the contribution from the first integral and then show that the other two integrals may be neglected.

$$\begin{split} \int_{-\epsilon}^{\epsilon} \frac{F(z_* e^{it})^N}{z_* e^{it}} &\stackrel{(a)}{=} (1 - O(\epsilon)) \int_{-\epsilon}^{\epsilon} e^{N \left[g(z_*) + \frac{g''(z_*)}{2} (1 - e^{it})^2 (z_*)^2 + O(t^3)\right]} \frac{dt}{z_*} \\ &= (1 - O(\epsilon)) \int_{-\epsilon}^{\epsilon} F(z_*)^N \times \\ &\exp \left[N \frac{g''(z_*)}{2} \left(-\sin^2 t + (1 - \cos t)^2 + 2i \sin t (1 - \cos t)\right) + NO(t^3)\right] \frac{dt}{z_*} \\ &\stackrel{(b)}{=} (1 - O(\epsilon)) \int_{-N^{-0.4}}^{N^{-0.4}} F(z_*)^N \exp \left[N \frac{g''(z_*)}{2} \left(-t^2 + O(t^4) + O(t^3)\right)\right] \frac{dt}{z_* e^{it}} \\ &\stackrel{(c)}{=} (1 - O(\epsilon)) \frac{F(z_*)^N}{\sqrt{N}} \int_{-N^{0.1}}^{N^{0.1}} \exp \left[\frac{g''(z_*)}{2} \left(-t^2 + O\left(\frac{t^3}{\sqrt{N}}\right)\right)\right] \frac{dt}{z_*} \\ &\stackrel{(d)}{=} \Theta\left(\frac{F(z_*)^N}{\sqrt{N}}\right), \end{split}$$

with the following steps at each labeled equality:

- (a) Using the local expansion of g around z_*
- (b) The asymptotic notation is used for $t \to 0$. For example, $(1 \cos t)^2 = O(t^4)$.

- (c) Change of variable: $t' = \sqrt{N}t$.
- (d) The integral is Gaussian (contributing a constant).

Next, we show that the integral $\int_{\epsilon}^{\pi} \frac{F(z_*e^{it})^N}{z_*e^{it}} dt$ may be neglected. The integral $\int_{-\pi}^{-\epsilon} \frac{F(z_*e^{it})^N}{z_*e^{it}}$ is treated similarly.

In order to bound the integral we bound separately

$$\int_{[0,\eta]\backslash[0,\epsilon]} \frac{F(z_*e^{it})^N}{z_*e^{it}} dt$$

and

$$\int_{[0,\pi]\backslash[0,\eta]}\frac{F(z_*e^{it})^N}{z_*e^{it}}dt,$$

where η is some small constant (independent of n) which is chosen so that: for $t \in ([-\eta, \eta] \setminus [-\epsilon, \epsilon])$ it holds that

$$|e^{g(z)}| = \left| \exp \left[g(z_*) + \frac{g''(z_*)}{2} (1 - e^{it})^2 + \cdots \right] \right|$$

$$\leq \left| \exp \left[g(z_*) - \frac{1}{4N^{0.8}} g''(z_*) \right] \right|,$$

SO

$$\left| \int_{[0,\eta]\setminus[0,\epsilon]} \frac{F(z_*e^{it})^N}{z_*e^{it}} dt \right| \le \int_{[0,\eta]\setminus[0,\epsilon]} \left| e^{N\left[g(z_*) + \frac{g''(z_*)}{2}(1 - e^{it})^2(z_*)^2 + \cdots\right]} \right| \frac{dt}{z_*e^{it}}$$

$$= O\left(F(z_*)^N \exp\left[-\frac{N^{0.2}g''(z_*)}{4}\right]\right).$$

For $t \in ([-\pi, \pi] \setminus [-\eta, \eta])$ it holds that $F(z_*e^{it}) \leq (1 - \Omega(1))F(z_*)$ (because $F(z_*)$ is a unique maximum on $[-\pi, \pi]$), so

$$\left| \int_{[-\pi/2,\pi/2)\setminus[-\eta,\eta]} \frac{F(z_*e^{it})^N}{z_*e^{it}} dt \right| = O\left((1 - \Omega(1))^N F(z_*)^N \right).$$

Using the saddle point method to approximate the other coeff[...] expression gives the following:

$$\varphi(\rho) = \sup_{\xi \in \{0,1\}} \inf_{\substack{x \geq 0 \\ y \geq 0 \\ z \geq 0}} \left\{ -\Lambda'(1)H(\xi) - \rho \log x - \Lambda'(1)\xi \log(yz) + \sum_{l=2}^{l_{\text{max}}} \Lambda_l \log(1 + xy^l) + \frac{\Lambda'(1)}{P'(1)} \sum_{k=2}^{k_{\text{max}}} P_k \log q_k(z) \right\}$$

$$= -\rho \log x - \Lambda'(1)\log(1 + yz) + \sum_{l=1}^{l_{\text{max}}} \Lambda_l (1 + xy^l) + \frac{\Lambda'(1)}{P'(1)} \sum_{k=2}^{k_{\text{max}}} P_k \log q_k(z),$$

where

$$\rho = \sum_{l=1}^{l_{\text{max}}} \Lambda_l \frac{xy^l}{1 + xy^l} \qquad \qquad y = \frac{\sum_{k=2}^{k_{\text{max}}} \rho_k P_k^-(z)}{\sum_{k=2}^{k_{\text{max}}} \rho_k P_k^+(z)}$$
$$z = \frac{\sum_{l=1}^{l_{\text{max}}} \lambda_l xy^{l-1} / (1 + xy^l)}{\sum_{l=1}^{l_{\text{max}}} \lambda_l / (1 + xy^l)} \qquad P_k^{\pm}(z) = \frac{(1 + z)^{k-1} \pm (1 - z)^{k-1}}{(1 + z)^k + (1 - z)^k}.$$