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1 Ising Model on Trees

In this lecture we examine when uniqueness holds for the Ising Model. The first section gives
an exact result for trees; the second section gives a sketch of a general bound comparing
graphs to trees. In the first section, we consider l-level d-ary trees Tl (i.e. each node has d
children). Recall that the probability of a spin assignment σ is

P(σ) =
1
Z

exp

β
∑
i∼j

σiσj + h
∑

i

σi

 .

Definition 1 Rv = P(σv = −)/P(σv = +)

The next claim gives a recursive expression for the ratio Rv.

Claim 2 Suppose v is the root, and v1, . . . , vd are the children of v. Then, for all boundary
conditions,

Rv = e−2h
d∏

i=1

F (Rvi) F (R) =
e2βR + 1
e2β + R

,

where Rvi is the above-defined ratio for the subtree rooted at vi.

Proof:
step 1: Let P′(σ) = Z−1 exp

(
β

∑
i∼j σiσj + h

∑
j 6=v σj

)
. Then

Rv =
P(σv = −)
P(σv = +)

=
P′(σv = −)
P′(σv = +)

e−2h.

step 2: Define P′i on the graph resulting from removing all subtrees of children of v from
the original tree, except vi and its subtree. Then

P′(σv = −)
P′(σv = +)

=
d∏

i=1

P′i(σv = −)
P′i(σv = +)

.
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step 3: Define P′′i on the subtree rooted at vi. Noting that the difference between P′i and
P′′i is only due to the potential on the edge v ∼ vi, we have

P′i(σv = −)
P′i(σv = +)

=
eβP′′i (σvi = −) + e−βP′′i (σvi = +)
e−βP′′i (σvi = −) + eβP′′i (σvi = +)

=
e2βRvi + 1
Rvi + e2β

= F (Rvi).

Note that this holds for all boundary conditions. Combining the expressions from each step
gives the desired result. 2

Observe that F (∞) = e2β and F (0) = e−2β. ∞ corresponds to boundary conditions all (−)
and 0 corresponds to boundary conditions all (+).

Claim 3 Suppose β ≥ 0. Then the boundary condition at level l maximizing P(σ(v) =
+|σl) is given by σl = +.

Proof: Follows from previous claim and next exercise. 2

Exercise 4 (1 point) Prove that when β ≥ 0, F is increasing, and when β < 0 then F is
decreasing.

Claim 5 For {Tl}, the set of d-regular trees with l levels, uniqueness holds if and only if

lim
l→∞

Pl(σ(root) = +|σl = +)−Pl(σ(root) = +|σl = −) = 0.

Proof:(⇐) Clearly, by the definition of uniqueness, if the limit is not equal to zero, then
uniqueness doesn’t hold.
(⇒) First, by Claim 3,

lim
l→∞

sup
τ,τ ′

Pl(σ(root) = +|σl = τ)−Pl(σ(root) = +|σl = τ ′) = 0.

It remains to show that for all k,

lim
l→∞

sup
τ,τ ′

Pl (σ (B(r, k)) = · |σl = τ)−Pl

(
σ (B(r, k)) = · |σl = τ ′

)
= 0,

which is left as an exercise. 2

Exercise 6 (2 points) Complete the proof.
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Claim 7 Suppose β ≥ 0, and let g(x) = log(e2β+x + 1) − log(e2β + ex). Then uniqueness
holds if and only if the equation

x = −2h + dg(x)

has a unique fixed point.

Proof: Let xl = log Rv(Tl). The recursion xl+1 = −2h + dg(xl) follows from Claim 2. The
condition in Claim 5 holds if and only if x = −2h + dg(x) has a unique fixed point since g
is monotone (see below).2

Claim 8 g is: 1) bounded, 2) increasing, 3) odd, 4)the max of g′(x) is obtained at x = 0,
5) g′ is decreasing on (0,∞) and increasing on (−∞, 0).

Using these properties, the next claim summarizes when uniqueness holds.

Claim 9 There exists a βc(d) such that if β ≤ β(d), then the recursion has a unique fixed
point for all h which implies uniqueness for all h. If β > βc(d), then there exists h(β) > 0
such that |h| < h(β) ⇔ non-uniqueness. Also in the later case 0 is repulsive, and the other
two fixed points are attractors.

Exercise 10 What happens in this situation where h = h(β)? What are the intervals of
attraction for each fixed point? (1 point)

Finally from the properties of g it follows that:

Claim 11 The critical β, βc(d), satisfies the following equation:

dg′(0) = d
e2β − 1
e2β + 1

= 1.

2 Ising Model on General Graphs

In this section we sketch a procedure that was invented by D. Weitz for calculating Rv for
general graphs by constructing a special tree corresponding to the original graph and using
the recursion from the previous section on this tree. We use the following model.

P (σ) =
1
Z

exp(
∑
i∼j

βijσij).
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We would ordinarily have a
∑

hiσi term, but we leave it out for simplicity. Fix an ordering
of the neighbors of v, i.e. let v have neighbors u1, . . . , ud in G. Form the graph G′ from G
by removing v and putting a new vertex vi adjacent to ui for 1 ≤ i ≤ d. Then

Rv =
P(σv = −)
P(σv = +)

=
PG′(σv1 = · · · = σvd

= −)
PG′(σv1 = · · · = σvd

= +)

=
d∏

i=1

PG′(σvi = −|σv1 . . . σvi−1 = +, σvi+1 . . . σvd
= −)

PG′(σvi = +|σv1 . . . σvi−1 = +, σvi+1 . . . σvd
= −)

=
d∏

i=1

Rτi
vi

,

where Rτi
vi

= F (Rτi
ui

) using the same argument as in step 3 of Claim 2, and

Rτi
ui

=
PG′(σui = −|σv1 · · ·σvi−1 = −, σvi+1 · · ·σvd

= +)
PG′(σui = +|σv1 · · ·σvi−1 = −, σvi+1 · · ·σvd

= +)
.

In this process we have removed all edges from v and made v to be a part of a tree.
Repeating this process recursively on {uj} gives an expression for Rv. By the construction
of the recursion, this expression for Rv is the same as that attained for a particular tree
(defined next) using the results for trees.

Let Tv(G) be the tree of self-avoiding walks starting at v. Whenever a loop is closed from
w → w′, fix σw′ = + if w′ < w, and σw′ = − if w′ > w (according to the ordering chosen
initially). Thus some of the leaves of Tv(G) are fixed, while the remaining leaves and nodes
are not. It holds that

PG(σv = −)
PG(σv = +)

=
PTv(G)(σv = −)
PTv(G)(σv = +)

for all boundary conditions.

References

[1] D. Weitz, “Counting Independent Sets up to the Tree Threshold,” Proceedings of the
Thirty-Eighth Annual ACM Symposium on Theory of Computing, 2006.

20-4


