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Lecture 20
Lecture date: Nov 2 Scribe: Guy Bresler

1 Ising Model on Trees

In this lecture we examine when uniqueness holds for the Ising Model. The first section gives
an exact result for trees; the second section gives a sketch of a general bound comparing
graphs to trees. In the first section, we consider [-level d-ary trees T; (i.e. each node has d
children). Recall that the probability of a spin assignment o is

1
P(o) = — ©XP ﬁZUin —i—hZGi
i~j 7
Definition 1 R, = P(o, = —)/P(0, = +)

The next claim gives a recursive expression for the ratio R,.

Claim 2 Suppose v is the root, and v1,...,vq are the children of v. Then, for all boundary
conditions,
d 28
9 . & R + 1
Rv—e HF(RUZ) F(R)—m,

where R,, is the above-defined ratio for the subtree rooted at v;.

Proof:
step 1: Let P/(0) = Z exp <ﬁ Doin 0i0 R, Uj). Then

step 2: Define P} on the graph resulting from removing all subtrees of children of v from
the original tree, except v; and its subtree. Then

P'(o,=—) 1y Pilo,=-)
Pl(o,=+) ZI;II Pi(oy, =+)
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step 3: Define P! on the subtree rooted at v;. Noting that the difference between P/ and
P is only due to the potential on the edge v ~ v;, we have

P;(O-U =-) _ eﬁpg(gvi =-)+ e_ﬁP;,(Uvi =+)

Pi(oy=+) e PP!(oy, =—)+ P (oy, = +)

e2’R, +1
———— = F(R,,).
Rvi+62ﬁ ( vl)

Note that this holds for all boundary conditions. Combining the expressions from each step
gives the desired result. O

Observe that F(co) = €3 and F(0) = e~ 25. oo corresponds to boundary conditions all (—)
and 0 corresponds to boundary conditions all (+).

Claim 3 Suppose 3 > 0. Then the boundary condition at level I maximizing P(o(v) =
+|oy) is given by o = +.

Proof: Follows from previous claim and next exercise. O

Exercise 4 (1 point) Prove that when 3 >0, F' is increasing, and when 3 < 0 then F' is
decreasing.
Claim 5 For {1}, the set of d-regular trees with | levels, uniqueness holds if and only if

lim P;(o(root) = +|o; = +) — Py(o(root) = +|oy = —) = 0.

l—o00

Proof:(«<) Clearly, by the definition of uniqueness, if the limit is not equal to zero, then
uniqueness doesn’t hold.
(=) First, by Claim 3,

lim sup P(o(root) = +|o; = 7) — Py(o(root) = +|o; = 7') = 0.

l—o0 7,7/
It remains to show that for all k,

Jim sup Py (0 (B(r, k) = -|oy = 7) = Py (0 (B(r, k) = -|or = 7) =0,

which is left as an exercise. O

Exercise 6 (2 points) Complete the proof.
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Claim 7 Suppose > 0, and let g(z) = log(e?P+® + 1) — log(e?® 4 e*). Then uniqueness
holds if and only if the equation
x = —2h+dg(x)

has a unique fized point.

Proof: Let x; = log R,(1;). The recursion ;11 = —2h + dg(z;) follows from Claim 2. The
condition in Claim 5 holds if and only if z = —2h + dg(x) has a unique fixed point since g
is monotone (see below).O

Claim 8 g is: 1) bounded, 2) increasing, 3) odd, 4)the maz of ¢'(x) is obtained at x = 0,
5) g is decreasing on (0,00) and increasing on (—c0,0).

Using these properties, the next claim summarizes when uniqueness holds.

Claim 9 There exists a B.(d) such that if 3 < 3(d), then the recursion has a unique fired
point for all h which implies uniqueness for all h. If B > B.(d), then there exists h(3) > 0
such that |h| < h(B) < non-uniqueness. Also in the later case 0 is repulsive, and the other
two fized points are attractors.

Exercise 10 What happens in this situation where h = h((3)? What are the intervals of
attraction for each fized point? (1 point)

Finally from the properties of g it follows that:

Claim 11 The critical 3, B.(d), satisfies the following equation:

625—17

/ = — =
dg'(0) = dew—i— 1

2 Ising Model on General Graphs

In this section we sketch a procedure that was invented by D. Weitz for calculating R, for
general graphs by constructing a special tree corresponding to the original graph and using
the recursion from the previous section on this tree. We use the following model.

P(o) = o exp(3 o).

i~vj
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We would ordinarily have a ) h;o; term, but we leave it out for simplicity. Fix an ordering
of the neighbors of v, i.e. let v have neighbors ug,...,ug in G. Form the graph G’ from G
by removing v and putting a new vertex v; adjacent to u; for 1 < ¢ < d. Then

R, = P(oy = —)

P(o, =+)

_ Po oy, = =0y, =—)

~ Paioy, == Opy = +)

_ ﬁ Po(ow, = —|0v, .o Op_, =+, 00,1 -+ Oy = —)
1 Pa(ov = +low . oov = 4,00, - 0p = )
d

=17
=1

where Rji = F(R]}) using the same argument as in step 3 of Claim 2, and

PG’(UW = _|le 0y = T O0uiq Oy = +)

R =
PG’(UW = —|—|le rO0vi g = T 0uiq Oy = +)

Us

In this process we have removed all edges from v and made v to be a part of a tree.
Repeating this process recursively on {u;} gives an expression for R,. By the construction
of the recursion, this expression for R, is the same as that attained for a particular tree
(defined next) using the results for trees.

Let T,,(G) be the tree of self-avoiding walks starting at v. Whenever a loop is closed from
w— v, fix oy =+ if W < w, and o,y = — if W' > w (according to the ordering chosen
initially). Thus some of the leaves of T, (G) are fixed, while the remaining leaves and nodes
are not. It holds that

Poloy=—)  Prclon=-)

Pglow=+)  Prg)low=+)

for all boundary conditions.
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