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Lecture 17

Lecture date: Oct 24 Scribe: Joel Mefford

Definition 1 (δ-expander) A graph G = (V,E) is a δ-expander if,
∀ subsets S ⊆ V, |S| ≤ |V |

2 we have |δS| ≥ δ|S|

Example 2 (Ising model) Consider the Ising model,
where Pβ[σ] = 1

Z exp(βi
∑
i,j
σiσj)

Claim 3 ∀δ > 0,∃βc, ε > 0 such that
∀δ-expanders, ∀β > βc it holds that for a fraction ε of pairs of vertices (i, j) we have
Eβ [σi, σj ] > ε,

The previous claim implies:

Claim 4 (non-uniqueness) For any family Pn of Ising models on δ- expander where all
vertex degrees ≤ D,
if β > βc(δ),
then for Pn we have reconstruction and non-uniqueness uniqueness.

Proof: Let G = (V,E) be a δ-expander graph with n = |V | = number of vertices and

S =
1
n

∑
v∈V

σv

Clearly, E[S] = 0.

The claim will be implied if we show that

E[S2] ≥ ε(β)

for β > βc and ε(βc) > 0, independent of n and β.

In order to prove the last statement it suffices to show that ∃ξ(βc) > 0 such that for β > βc

it holds that P[|S| ≤ ξ] ≤ 2−n+5.
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Consider a σ such that |S(σ)| < ξ. Then we claim that for apropriate values of ξ and βc it
holds that.

Pβ(σ)
Pβ(1)

< 4−n−5 (1)

Since the number of possible σ is at most 2n, (1) implies the desired result.

We now prove (1) using δ-expansion.

Let Aσ = {i : σi = 1}. WLOG, let |Aσ| < n
2 .

Then, using expansion,

|∂Aσ| ≥ δ|Aσ| ≥
δ(1− ξ)n

2

This implies that, for β sufficiently large,

Pβ(σ)
Pβ(1)

≤ exp
(
−2βδ

(
(1− ξ)n

2

))
≤ 4−n−5

2
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New topic: Tree factorization and Belief Propagation(BP)

Claim 5 (Factorization 1) Consider k-factorized distributions over factor graphs:
G1, . . . , Gk.

Let v1 ∈ V (G1), . . . , vk ∈ V (Gk).

Let P be the distribution obtained by identifying v1, . . . , vk into a single vertex v. Graph-
ically, this is done by connecting the vertices in the vertex-set v1, . . . , vk with hyperedges
having potentials ψ.

G_1

G_2

G_3

G_k

v_11

v_12

v_13

v_21

phi_1

v_22

v_24

v_31

phi_2

v_23 v_32 v_k1

v_k2

v_k3

Figure 1:
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The following joint distributions are then defined:

P (x1, x2, . . . , v) =
1
Z

k∏
j=1

Mn∏
σ=1

ψj
δσ(xj , xv)

Pj(xj , xvj ) =
1
Z

Mj∏
σ=1

ψδσ(xj , xvj )

Here, Z is a normalization constant, and xj is a vector of everything except xvj .

Then,

P (x1, x2, . . . , xk, xv) =
1
Z

k∏
j=1

Pj(xj , xv)

P (xv) =
1
k

k∏
j=1

Pj(xv)
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Claim 6 (Factorization 2) For a factorized graph G = G1, G2, . . . , Gk and P1, P2, . . . , Pk

as above, now consider the vertices v1, v2, . . . , vk to be connected through a factor node with
potential ψ.

G_1 G_2 G_k

psi

v_11 v_21 v_k1

v_12

v_13

v_22

v_24

v_23

v_k2

v_k3

Figure 2:

Then we have the factorization,

P (x1, . . . , xk, xv1 , xv2 , . . . , xvk
) =

1
Z
ψ(xv1 , . . . , xvk

)
k∏

j=1

Pj(xj , xvj )

= P (xv1 , . . . , xvk
)

=
1
Z
ψ(xv1 , . . . , xvk

)
k∏

i=1

Pi(xvi)
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Corollary 7 For a tree-factor graph one can compute any marginal probabilities in time
O(nAkmax

max ), where,

• n is the size of the tree (number of nodes)

• kmax is the maximum degree of a factor node

• Amax is the maximum possible number of values of X

The last result shows that we can calculate any marginal probabilities in linear time (in
n). In fact

Claim 8 We can even calculate all marginal probabilities in linear time.

Proof: Given a factor node f and a variable node v.

Let Mf→v be the marginal of v at the graph Gf→v.

F

F’

F’’

V G: F->V

Figure 3:

Let Mv→f be the marginal of V at the graph GV→F .

Then,

Mv→f =
1
Z

∏
f 6=f ′∼v

Mf ′→v(xv)

Mf→v =
1
Z

∑
xw1 ,...,xwk

ψ(xw1 , . . . , xwk−1
, xv)

k−1∏
i=1

Mwi→f (Xwi)

P (Xv) =
1
Z

∏
f∼v

Mf→v(Xv)
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Figure 4:

,

where f ∼ v are the factor nodes adjacent to v, f 6= f ′ ∼ v are the factor nodes adjacent
to v, excluding v′, and w1, . . . , wk are the variable nodes adjacent to f .

If we restrict attention to the neighbors of a given node, and make use of the factorization
claim above, we have,

m̄f→v(Xw1 , . . . , Xwk
) =

1
Z
ψ(xσv , xw1 , . . . , xwk−1

)
k−1∏
i=1

Mwi→f (Xwi)

Marginalization yields the equations above.

If we have all Mf→w, we can get all P (xv) in linear time (∝ n). To determine Mf→v, we
need all values Mv→f leading into it. To determine Mv→f , we need all values Mf→v leading
into it. If the graph is a tree, we can start the computation at the leaves and work towards
the root, finishing in time proportional to the number of vertices on the graph, n.

2

Definition 9 (Loopy Belief Propagation (LBP)) LBP is a method to calculate
marginals on cyclic factor graphs by expanding the graph into a truncated tree and then
applying the algorithm above to the expanded graph. More next time.
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