Definition 1 (\(\delta\)-expander) A graph \(G = (V, E)\) is a \(\delta\)-expander if,
\[
\forall \text{ subsets } S \subseteq V, |S| \leq \frac{|V|}{2} \text{ we have } |\delta S| \geq \delta |S|
\]

Example 2 (Ising model) Consider the Ising model,
where \(P_\beta[\sigma] = \frac{1}{Z} \exp(\beta \sum_{i,j} \sigma_i \sigma_j)\)

Claim 3 \(\forall \delta > 0, \exists \beta_c, \varepsilon > 0\) such that
\(\forall \delta\)-expanders, \(\forall \beta > \beta_c\) it holds that for a fraction \(\varepsilon\) of pairs of vertices \((i, j)\) we have
\(E_\beta[\sigma_i, \sigma_j] > \varepsilon\),

The previous claim implies:

Claim 4 (non-uniqueness) For any family \(P_n\) of Ising models on \(\delta\)-expander where all
vertex degrees \(\leq D\),
if \(\beta > \beta_c(\delta)\),
then for \(P_n\) we have reconstruction and non-uniqueness uniqueness.

Proof: Let \(G = (V, E)\) be a \(\delta\)-expander graph with \(n = |V| = \text{number of vertices}\) and
\[
S = \frac{1}{n} \sum_{v \in V} \sigma_v
\]
Clearly, \(E[S] = 0\).

The claim will be implied if we show that
\[
E[S^2] \geq \varepsilon(\beta)
\]
for \(\beta > \beta_c\) and \(\varepsilon(\beta_c) > 0\), independent of \(n\) and \(\beta\).

In order to prove the last statement it suffices to show that \(\exists \xi(\beta_c) > 0\) such that for \(\beta > \beta_c\) it holds that
\(P[|S| \leq \xi] \leq 2^{-n+5}\).
Consider a σ such that $|S(\sigma)| < \xi$. Then we claim that for appropriate values of ξ and β_c it holds that.

$$\frac{P_\beta(\sigma)}{P_\beta(1)} < 4^{-n-5}$$

(1)

Since the number of possible σ is at most 2^n, (1) implies the desired result.

We now prove (1) using δ-expansion.

Let $A_\sigma = \{ i : \sigma_i = 1 \}$. WLOG, let $|A_\sigma| < \frac{n}{2}$.

Then, using expansion,

$$|\partial A_\sigma| \geq \delta |A_\sigma| \geq \frac{\delta (1 - \xi) n}{2}$$

This implies that, for β sufficiently large,

$$\frac{P_\beta(\sigma)}{P_\beta(1)} \leq \exp\left(-2\beta\delta\left(\frac{(1 - \xi)n}{2}\right)\right) \leq 4^{-n-5}$$

\[\square\]
Claim 5 (Factorization 1) Consider k-factorized distributions over factor graphs: G_1, \ldots, G_k.

Let $v_1 \in V(G_1), \ldots, v_k \in V(G_k)$.

Let P be the distribution obtained by identifying v_1, \ldots, v_k into a single vertex v. Graphically, this is done by connecting the vertices in the vertex-set v_1, \ldots, v_k with hyperedges having potentials ψ.

![Figure 1: Diagram of factorization in factor graphs](image-url)
The following joint distributions are then defined:

$$P(x_1, x_2, \ldots, x_v) = \frac{1}{Z} \prod_{j=1}^{k} \prod_{\sigma=1}^{M_j} \psi_{j\sigma}^j(x_j, x_v)$$

$$P_j(x^j, x_{v_j}) = \frac{1}{Z} \prod_{\sigma=1}^{M_j} \psi_{\delta\sigma}(x^j, x_{v_j})$$

Here, Z is a normalization constant, and x^j is a vector of everything except x_{v_j}.

Then,

$$P(x^1, x^2, \ldots, x^k, x_v) = \frac{1}{Z} \prod_{j=1}^{k} P_j(x^j, x_v)$$

$$P(x_v) = \frac{1}{k} \prod_{j=1}^{k} P_j(x_v)$$
Claim 6 (Factorization 2) For a factorized graph $G = G_1, G_2, \ldots, G_k$ and P_1, P_2, \ldots, P_k as above, now consider the vertices v_1, v_2, \ldots, v_k to be connected through a factor node with potential ψ.

Then we have the factorization,

$$P(x^1, \ldots, x^k, x_{v_1}, x_{v_2}, \ldots, x_{v_k}) = \frac{1}{Z} \psi(x_{v_1}, \ldots, x_{v_k}) \prod_{j=1}^{k} P_j(x^j, x_{v_j})$$

$$= P(x_{v_1}, \ldots, x_{v_k})$$

$$= \frac{1}{Z} \psi(x_{v_1}, \ldots, x_{v_k}) \prod_{i=1}^{k} P_i(x_{v_i})$$
Corollary 7 For a tree-factor graph one can compute any marginal probabilities in time $O(nA_{\text{max}}^{k_{\text{max}}})$, where,

- n is the size of the tree (number of nodes)
- k_{max} is the maximum degree of a factor node
- A_{max} is the maximum possible number of values of X

The last result shows that we can calculate any marginal probabilities in linear time (in n). In fact

Claim 8 We can even calculate all marginal probabilities in linear time.

Proof: Given a factor node f and a variable node v.

Let $M_{f\rightarrow v}$ be the marginal of v at the graph $G_{f\rightarrow v}$.

Let $M_{v\rightarrow f}$ be the marginal of V at the graph $G_{V\rightarrow F}$.

Then,

\[
M_{v\rightarrow f} = \frac{1}{Z} \prod_{f \neq f' \sim v} M_{f'\rightarrow v}(x_v)
\]

\[
M_{f\rightarrow v} = \frac{1}{Z} \sum_{x_{w_1}, \ldots, x_{w_k}} \psi(x_{w_1}, \ldots, x_{w_k-1}, x_v) \prod_{i=1}^{k-1} M_{w_i\rightarrow f}(x_{w_i})
\]

\[
P(X_v) = \frac{1}{Z} \prod_{f \sim v} M_{f\rightarrow v}(X_v)
\]
where $f \sim v$ are the factor nodes adjacent to v, $f \neq f' \sim v$ are the factor nodes adjacent to v, excluding v', and w_1, \ldots, w_k are the variable nodes adjacent to f.

If we restrict attention to the neighbors of a given node, and make use of the factorization claim above, we have,

$$
\bar{m}_{f \rightarrow v}(X_{w_1}, \ldots, X_{w_k}) = \frac{1}{Z} \psi(x_{\sigma_v}, x_{w_1}, \ldots, x_{w_k-1}) \prod_{i=1}^{k-1} M_{w_i \rightarrow f}(X_{w_i})
$$

Marginalization yields the equations above.

If we have all $M_{f \rightarrow w}$, we can get all $P(x_v)$ in linear time ($\propto n$). To determine $M_{f \rightarrow v}$, we need all values $M_{v \rightarrow f}$ leading into it. To determine $M_{v \rightarrow f}$, we need all values $M_{f \rightarrow v}$ leading into it. If the graph is a tree, we can start the computation at the leaves and work towards the root, finishing in time proportional to the number of vertices on the graph, n.

□

Definition 9 (Loopy Belief Propagation (LBP)) LBP is a method to calculate marginals on cyclic factor graphs by expanding the graph into a truncated tree and then applying the algorithm above to the expanded graph. More next time.