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In this lecture, we complete the proof of the bit-flipping algorithm from lecture 14. Further-
more, we prove the Gallager Bound, an upper bound on the tolerable probability of noise
under the assumption of a reliable communication. We start with a review of the definition
of an expander graph and the description of the bit flipping algorithm.

1 Bit Flipping Algorithm

Assume that we have a binary linear code defined using a specific Code graph(or Tanner
graph). A Code graph is a bipartite graph with the variable nodes on one side and check
nodes on the other side. As we saw in the previous lectures, each check node imposes a
parity constraint on the set of variable nodes connected to it. In the previous lecture, we
defined a decoding algorithm which we claimed has a guarantee of success for all Code
graphs which are expander and have fixed variable node degrees. Before making these
definitions more precise, we review the definition of an expander graph:

Definition 1 A factor graph is a (ε, δ)-expander if for every subset U of the set of variable
nodes of size bounded by |U | ≤ εN , it holds that |∂U | > δ|U |, where ∂U is the set of factor
nodes adjacent to at least one node in U.

Assume that we have transmitted some codeword W = (W1, ...,Wm) and the decoder
has received the output sequence Y = (Y1, ..., Ym) over a BSC channel with parameter p
(meaning P (Yi = Xi) = 1− p).

The bit flipping algorithm starts out with sequence Y = (Y1, ..., Ym). Each check node
introduces a constraint. As we saw in the previous lecture, in each step, the algorithm tries
to find a bit, flipping of which reduces the number of unsatisfied clauses. The algorithm
stops when for every bit, the number of unsatisfied constraints is less or equal to the number
of satisfied constraints. Since the number of unsatisfied constraints reduces in each step,
the algorithm has to stop. We will prove the following theorem:

Theorem 1.Consider a Code graph where all variable nodes have degree l, and the graph
is (ε, δ)-expander. Then the bit- flipping algorithm will correct any pattern of at most Nε

2
errors.

Proof: Without loss of generality we can assume the all zero codeword has been sent
(since the code is linear). Thus the hamming weight of the received codeword equals to the
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number of bits we have received in error. Let

• X(t) denote the string at the tth iteration of the algorithm. Since we start out with
the received message, we have X(0) = Y .

• W (t) denote the hamming weight of X(t).

• u(t) denote the number of unsatisfied check nodes.

• s(t) denote the number of satisfied checks that are adjacent to at least one Xi such
that Xi = 1.

Since the number of errors is at most Nε
2 , we have w(0) ≤ Nε

2 .

It is clear from the bit-flipping algorithm that u(t) is a decreasing function of t. The
following two propositions thus imply the result stated at Theorem 1.

Proposition 1. Let t∗ be the iteration in which the algorithm stops, then w(t∗) is either
zero, or is greater than or equal to Nε.

Proof:Assume that 0 < w(t∗) < Nε. Consider the nodes which are one. Because of
expansion, the number of check nodes adjacent to those nodes that are one is at least
3
4 lw(t∗). Let set T denote these set of check nodes.

The check nodes adjacent to variable nodes that are ones are either counted in u(t) or s(t).
Therefore |T | = u(t∗) + s(t∗) > 3

4 lw(t∗).

On the other hand, since every satisfied check is adjacent to at least two variable nodes with
Xi = 1, the number of edges going out from the set T is at least u(t∗) + 2s(t∗). But since
the degree of each variable node is l, the number of edges going out from set T is exactly
equal to lw(t∗), and therefore we get u(t∗) + 2s(t∗) ≤ lw(t∗). This inequality together with
u(t∗) + s(t∗) > 3

4 lw(t∗), one can easily show, imply that u(t∗) > 1
2 lw(t∗).

But u(t∗) > 1
2 lw(t∗) implies that there exist at least one variable node with Xi = 1 that

is adjacent to more than l
2 check nodes. This is a contradiction since this variable node

is adjacent to more unsatisfied nodes than satisfied nodes and thus the algorithm couldn’t
have stopped at iteration t∗.

Proposition 2. The algorithm can not terminate with a string of weight greater than Nε.
Proof:It is enough to prove that there is no t such that w(t) = Nε. Assume otherwise that
w(t) = Nε. The above inequalities show that u(t) > l

2w(t) = l
2Nε. On the other hand,

u(t) ≤ u(0) = lNε
2 which is a contradiction.
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2 The Gallager Bound

In this section, we prove the Gallager Bound. We first start with the problem setup:
Consider a linear code of rate R, based on a tanner graph with (Λ, P ) degree distribution.
Assume that such code when passed through a BSC channel with cross-over probability
PM could be reliably decoded at the decoder (that is probability of error goes to zero with
block length converging to infinity). The Gallager Bound states:

Theorem 2. Let PG be the solution of the equation: H(p) = (1 − R)
∑

i PiH(1−(1−2p)i

2 ).
Then PM ≤ PG.

Comment: As we saw in previous lectures, for the LDPC codes and with high probability,

we have R = 1− Λ
′
(1)

P
′
(1)

.

Proof:Let X = (X1, ..., Xn) to be the transmitted codeword, Y = (Y1, ..., Yn) to be the
received string. Assume S = (S1, ..., Sm) to be the values of check nodes corresponding to
Y = (Y1, ..., Yn). (Thus, we are assuming that there are m check nodes in the code graph).
Assume that X is chosen uniformly random from the set of possible codewords. We will
use the following Lemmas which we will prove at the end of this section:

Lemma 1. We have H(Y ) = H(X) + H(S).

Lemma 2. If H(X|Y ) ≥ δN , the probability of decoding error is lower bounded by a
constant depending on δ.

Lemma 3. Let C1, C2,...,Ci to be i, binary i.i.d. random variables distributed according
to Bernoulli distribution B(p), then their binary sum C = C1 + C2 + ... + Ci (mod2) is
distributed according to B(1−(1−2p)i

2 ).

Now we have H(X|Y ) = H(X) + H(Y |X) − H(Y ) = NR + NH(pM ) − H(Y ) =1

NR+NH(pM )−NR−H(S) = NH(pM )−H(S) where (1) is true because of Lemma 1. We
can upper bound H(S) by

∑m
i=1 H(Si). Since Si is a binary addition of some variable nodes,

each of which are binary random variables with uncertainty h(pM ), we can apply Lemma 2
to get H(Si) = h(1−(1−2pM )mi

2 ) where mi is the number of variable nodes connecting to Si.

The number of check nodes having mi = r is equal to Λ
′
(1)

P ′ (1)
NPi. Therefore

∑m
i=1 H(Si) =

Λ
′
(1)P

′
(1)N

∑
i PiH(1−(1−2pM )i

2 ) = N(1 − R)
∑

i PiH(1−(1−2pM )i

2 ). Hence H(X|Y ) ≥
NH(pM )−N(1−R)

∑
i PiH(1−(1−2pM )i

2 ) = N [H(pM )− (1−R)
∑

i PiH(1−(1−2pM )i

2 )]

Now if pM < pG, the expression inside the brackets is positive, hence H(X|Y ) is lower
bounded by some δN . But this is in contradiction with the result of Lemma 3.

Now we prove the above Lemmas:
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Proof of Lemma 1: Since random variable S is a function of Y , we have H(Y ) =
H(Y, S) = H(S) + H(Y |S). So, we need to prove that H(Y |S) = H(X). But H(Y |S) =
EsH(Y |S = s). It is enough to prove that H(Y |S = s) is equal to H(X) for every s. But the
set of all possible y’s for which S(Y = y) = s is nothing but a affine linear subspace of the
whole space; i.e. {y : S(Y = y) = s} = {y : S(Y = y) = 0}+ y0 = { The Set of Codewords
}+ y0 where y0 is some arbitrary string satisfying the property S(Y = y0) = s. Moreover,
because the symmetry of the linear codes, Y |S = s would have a uniform distribution
over the mentioned set. Hence H(Y |S = s) = log |{y : S(Y = y) = s}| = NR = H(X).
Therefore H(Y ) = H(X) + H(S)

Remark : We have only use H(Y ) ≤ H(X) + H(S) in the proof, which could be proved
even easier: For every s, H(Y |S = s) ≤ log |{y : S(Y = y) = s}| = NR = H(X).

Proof of Lemma 2: Since H(X|Y ) = Ey(H(X|Y = y)), one can conclude that with
probability at least δ

2 over the observation of random variable Y , H(X|Y = y) ≥ δ
2N .

Having received Y = y, the best choice for X is the one that maximizes P (X = x|Y = y).
Assume that the maximum of P (X = x|Y = y) is v. It is enough to prove that v is not
close to one (since then probability of error would be at least (1 − v) δ

2). In order to prove
that v is not close to one, we upper bound the entropy of H(X|Y = y) by the entropy
of the distribution on codewords which takes x with probability v and is uniform over all
other codewords with total probability (1 − v). Therefore H(X|Y = y) is upper bounded
by −v log v − (2RN − 1).[ 1

2RN−1
(1 − v) log((2RN − 1)(1 − v)] ≤ −v log(v) − (1 − v) log(1 −

v) + RN(1 − v) ≤ 1 + RN(1 − v). Comparing the lower bound on H(X|Y = y) and this
upper bound, it can be seen that v is bounded away from 1.

Proof of Lemma 3: This can be easily proved using induction, or by defining the
random variables Qi = (−1)Ci and expanding E(Q1.Q2...Qi)(which we can do since Qi’s
are independent). The binary addition of Ci’s is zero if an only if the product of Qi’s is
one.
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