
STAT 206A: Gibbs Measures Fall 2006

Lecture 14

Lecture date: Oct 12 Scribe: Alex Fabrikant

1 Capacity of LDPC codes

As in the preceding lecture, let us define a Binary Symmetric Channel (BSC) with parameter
p, which, for each bit of the transmission independently, flips the bit with probability p and
transmits it correctly with probability 1− p:
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Given an LDPC code, we want to ask whether we can decode the output of a BSC trans-
mission encoded by this code.

Claim 1 Let p < 1
2 . Then the “most” likely codeword x that was sent via a BSC, given

that we received word y is given by the z ∈ C that minimizes the Hamming distance dH(y, z)

Proof: By vigorous assertion of obviousness. 2

1.1 Bhattacharya Bound

Assume, WLOG, that the zero codeword was sent, and y was received. Let PB(C) = P[∃z ∈
C, z 6= 0 s.t. d(y, z) ≤ d(y, 0)], i.e. the probability that the decoding will be wrong. For an
LDPC ensemble, let PB = E[PB(C)].
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Claim 2 PB ≤
∑N

w=1 W (w)e−γw, where γ = − log
√

p(1− p) and W is the expectation,
over the LDPC ensemble, of the number of codewords of weight w. Equivalently, PB ≤
∑N

w=1 W (w)(4p(1− p))w/2.

Proof: From the definition, we have:

PB ≤ E





∑

06=x∈C

P [d(x, y) ≤ d(0, y)]



 (1)

=
N

∑

w=1

W (w)P [d(x(w), y) ≤ d(0, y)] (2)

Note that, in the first line, the outer expectation is over the LDPC ensemble, the sum is
over codewords in the code, and the probability is over the distribution of y’s as received
over a BSC. In the second line, x(w) is a weight-w word, which we can set, without loss of
generality, to the bit string consisting of w 1’s followed by N − w 0’s.

P [d(x(w), y) ≤ d(0, y)] = P [exp (λ(d(0, y)− d(x(w), y))) ≥ 1] (λ ≥ 0) (3)

≤ E [exp (λ(d(0, y)− d(x(w), y)))] (4)

This is just equal to the product of these expectations for each bit of y separately (since
BSC output bits are flipped independently of each other), yielding P[d(x(w), y) ≤ d(0, y)] ≤
(peλ + (1 − p)e−λ)w for any λ ≥ 0. It can be shown that this bound is strongest for λ =
1
2 log

(

1−p
p

)

, yielding a bound of (2
√

p(1− p))w, and thus PB ≤
∑N

w=1 W (w)(4p(1−p))w/2.
2

Exercise 3 Derive a Bhattacharya bound for the general binary memoryless case:
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Hint: use a different distance function, dQ(x, y) = −
∑N

i=1 log Q(yi|xi). Instead of
log

√

4p(1− p), use log QB, where QB =
∑

y∈{0,1}

√

Q(y|1)Q(y|0).
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Claim 4 Consider LDPC(Λ, P ) where lmin, the minimum degree, is at least 3, and BSC
with parameter p. Let γ = − log

√

4p(1− p). Suppose that ϕ(ρ) < γρ for all ρ ∈ (0, x);
eNϕ(ρ) = W (ρN). Then, PB → 0 as N goes to infinity.

Proof:

From the above, PB =
∑N

w=1 W (w)e−γw. The problem is with small codewords, so we
invoke Claim 1 to split the sum by “weight category”:

PB =
εN
∑

w=1

W (w)e−γw +
N

∑

w=εN

e−γweϕ( w

N
)N

We claimed before (without proof) that for lmin ≥ 3, the factor graph is a good expander
for small sets and therefore the first term is 0 with high probability. The second terms
is bounded using the estimate of W̄ in terms of ϕ (which is exact up to sub-exponential
terms). 2

2 Encoding algorithm

We note that encoding linear codes is computationally “easy”. Given an NR-bit input z,
where R < 1 is the rate of the code, just multiply the code matrix G by it to produce the
N -bit codeword Gz. It should be noted that, while multiplying a matrix by a vector can
be done in time polynomial with respect to their sizes, from the engineering point of view
this is often not enough – as linear time encoding and decoding is desired.

3 Decoding algorithm

Without any noise in the channel, decoding would be a just a matter of solving a system
of linear equations, which can be done efficiently by Gaussian elimination. However, this is
not robust with respect to noise.

The “easiest” decoding algorithm is the bit-flipping algorithm:

Claim 5 Let E(I) be the number of unsatisfied constraints at time I. E(I) decreases at
each step and if E(I) = 0, then X(I) ∈ C.

Two natural assumptions when we consider decoding are:
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1: Receive y
2: x(0)← y
3: while x(I) has bits belonging to more UNSAT constraints than SAT ones do

4: X(I + 1)← X(I) with such a bit flipped
5: If can’t flip anything, then exit
6: I ← I + 1
7: end while

1. Channel assumption: yi = xi⊕zi, where zi’s are independent Bernoulli variables with
parameter p

2. Distance Assumption: d(x, y) < ηN

If η > p, the former assumption implies the latter w.h.p.

Definition 6 A factor graph is a (ε, δ)-expander if subsets U of the set of variable nodes
of size bounded by |U | ≤ εN , it holds that |∂U | ≥ δ|U |, where δU is the set of factor nodes
adjacent to at least one node in U .

Claim 7 Consider a random (l, k)-regular factor graph Z, where l is the degree of factor
nodes, and k — the degree of variable nodes, with Z thus having N variable nodes and Nl/k
factor nodes. Then, for all δ ≤ l− 2 there exists an ε > 0 such that Z is an (ε, δ)-expander
with high probability (i.e. probability approaching 1 as N goes to infinity).

Proof: Left as an exercise. 2

Theorem 8 Consider an (l, k) LDPC on a graph that is an (ε, 3
4 l)-expander. Then the

bit-flipping algorithm will correct any pattern of at most Nε
2 errors.

This will be proven in the next lecture.
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