In the previous lecture we saw how to express the function $\varphi(\rho)$ which is the normalized log of the expected number of code words with relative weight ρ. This was given by the formula:

$$\varphi(\rho) = \sup_{\xi \in \{0, 1\}} \inf_{x \geq 0, y \geq 0, z \geq 0} \left\{-\Lambda'(1)H(\xi) - \rho \log x - \Lambda'(1)\xi \log(yz) + \sum_{l=2}^{l_{\text{max}}} \Lambda_l \log(1 + xy^l) + \frac{\Lambda'(1)}{P'(1)} \sum_{k=2}^{k_{\text{max}}} P_k \log q_k(z)\right\}$$

$$= -\rho \log x - \Lambda'(1) \log(1 + yz) + \sum_{l=2}^{l_{\text{max}}} \Lambda_l (1 + xy^l) + \frac{\Lambda'(1)}{P'(1)} \sum_{k=2}^{k_{\text{max}}} P_k \log q_k(z),$$

where

$$\rho = \sum_{l=1}^{l_{\text{max}}} \Lambda_l \frac{xy^l}{1 + xy^l}, \quad y = \frac{\sum_{k=2}^{k_{\text{max}}} \rho_k P_k^{-}(z)}{\sum_{k=2}^{k_{\text{max}}} \rho_k P_k^{+}(z)} \quad \text{and} \quad P_k^{\pm}(z) = \frac{(1 + z)^{k-1} \pm (1 - z)^{k-1}}{(1 + z)^k + (1 - z)^k}.$$
\[z \sim \frac{\lambda_{\ell(\text{min})}^x y^{\ell(\text{min})-1}}{\sum \lambda_{\ell}} = \lambda_{\ell(\text{min})}^x y^{\ell(\text{min})-1}, \]

and

\[\rho \sim \Lambda_{\ell(\text{min})}^x y^{\ell(\text{min})-1}. \]

From the corollary, it is clear that the short distance properties depend very strongly on the minimal possible variable degree. We will discuss the three cases: \(\ell(\text{min}) = 1 \), \(\ell(\text{min}) = 2 \) and \(\ell(\text{min}) \geq 3 \).

\(\ell(\text{min}) = 1 \). In this case we obtain:

\[y \sim \rho'(z), \quad z \sim \lambda_1 x, \quad \rho \sim \Lambda_1 xy \]

and therefore

Corollary 2

\[\varphi(\rho) = -\frac{1}{2} \rho \log \rho + O(\rho) \]

and therefore for each \(\rho \) the expected number of code words of weight \(\rho \) is exponential in \(n \).

In fact one can obtain the fact that in the case \(\ell(\text{min}) = 1 \) there are many codewords of small weight also with high-probability observing that

Claim 3 If \(\ell(\text{min}) = 1 \) then w.h.p. every codeword has \(\Omega(N) \) code-words at distance 2 from it.

The proof of the claim follows by observing that w.h.p there is a linear fraction of factor nodes connected to variable nodes of degree 1 only.

\(\ell(\text{min}) = 2 \)

Claim 4 If \(\ell(\text{min}) = 2 \) then \(\varphi(\rho) \sim A\rho \) where

\[A = \log \frac{P''(1)2\Lambda_2}{P'(1)\Lambda'(1)} \]

The proof of this claim is left as an exercise (1 point)
Claim 5 If $\ell(\text{min}) = 3$ then

$$\varphi(\rho) \sim \frac{\ell(\text{min}) - 2}{2} \rho \log(\rho/\Lambda_{\ell(\text{min})}).$$

The proof of this claim is left as an exercise (1 point).

Small linear distances and sub-linear distances Using the previous two claims and a first moment argument we obtain:

Corollary 6 Consider LDPC with $\ell(\text{min}) \geq 3$ or $\ell(\text{min}) = 2$ and $A < 0$. Let ρ^* be the first non-trivial zero of φ. Then for any open interval $(\rho_1, \rho_2) \subset [0, \rho^*)$ it holds that w.h.p there are no code words with weight in the interval $N(\rho_1, \rho_2)$.

Remark 7 Note that the claim above does not exclude the case of codewords of sub-linear weight. In fact,

- When $\ell(\text{min}) = 2$ a small (but positive) number of code-words of sub-linear weight exists with high probability.
- When $\ell(\text{min}) \geq 3$ w.h.p. there are no code-words of sub-linear weight. The proof of this fact is similar to expansion proofs we will see later.

0.1 Rate of LDPC codes

Recall that the rate of a linear code $C \subseteq F_2^n$ is given by $\log |C| / \log n$. We have seen that for any code with degree distribution Λ', P' it holds that the rate R of the code satisfies:

$$R \geq 1 - \frac{\Lambda'(1)}{P'(1)}.$$

We will now see that generally for LDPC codes, it holds that the rate is indeed given w.h.p by

$$R = 1 - \frac{\Lambda'(1)}{P'(1)}.$$

One way to find an upper bound on the rate is to upper bound the maximum value of $\varphi(\rho)$. It is natural to expect that the maximum is obtained at $\rho = 1/2$.

12-3
Exercise 8 Find conditions on the degree distributions implying that the maximum of φ is obtained at $\rho = 1/2$.

Claim 9 Suppose that the maximum of φ is obtained at $\rho = 1/2$ and that $\delta > 0$ the w.h.p. it holds that
\[\mathbb{R} \leq 1 - \frac{\Lambda'(1)}{P'(1)} + \delta. \]

Proof: Using a first moment argument it suffices to show that
\[\varphi(1/2) \leq \log(2) \left(1 - \frac{\Lambda'(1)}{P'(1)} \right). \]

Next one verifies that $\rho = 1/2$ correspond to $x = y = z = 1$ in the formula for φ. Plugging this into the formula then gives:
\[\varphi(1/2) = \log(2) \left(1 - \frac{\Lambda'(1)}{P'(1)} \right). \]

\square