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In the previous lecture we saw how to express the function ¢(p) which is the normalized
log of the expected number of code words with relative weight p. This was given by the
formula:
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In this lecture we will use the formula above to obtain short-distance properties of LDPC
codes. If there are no code words of weight greater than dn then for each pattern of up
to dn/2 errors we can recover the transmitted codeword correctly. This also implies that
if errors are introduced independently on each coordinate with probability ¢ < §/2 then
w.h.p. the correct transmitted word can be recovered.

In order to derive short distance properties we will apply the formula above when
p—0,

Looking at the equation for p we see that p — 0 implies that either z — 0 or y — 0. From
the equation for y we see that y — 0 implies z — 0. On the other hand x — 0 implies
that z — 0 by the equation for z and z — 0 implies y — 0 by the equation for y. We thus
conclude:

Corollary 1 When p — 0 we have y — 0 and z — 0 and therefore
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From the corollary, it is clear that the short distance properties depend very strongly on the
minimal possible variable degree. We will discuss the three cases: ¢(min) = 1,#(min) = 2
and /(min) > 3.
¢(min) =1 . In this case we obtain:

y~p'2), 2z~ z, p~ My

and therefore

Corollary 2
1
p(p) = —5plogp + O(p)

and therefore for each p the expected number of code words of weight p is exponential in n.

In fact one can obtain the fact that in the case ¢(min) = 1 there are many codewords of
small weight also with high-probability observing that

Claim 3 If{(min) = 1 then w.h.p. every codeword has Q(N) code-words at distance 2 from
1t.

The proof of the claim follows by observing that w.h.p there is a linear fraction of factor
nodes connected to variable nodes of degree 1 only.

¢(min) = 2

Claim 4 If {(min) = 2 then ¢(p) ~ Ap where

P"(1)2A5

A=lo8 pra)

The proof of this claim is left as an exercise (1 point)
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/(min) = 3

Claim 5 If {(min) = 3 then

¢(min) —

2
o(p) ~ 5 plog(p/Aymin))-

The proof of this claim is left as an exercise (1 point).

Small linear distances and sub-linear distances Using the previous two claims and
a first moment argument we obtain:

Corollary 6 Consider LDPC with {(min) > 3 or {(min) = 2 and A < 0. Let p* be the first
non-trivial zero of . Then for any open interval (p1,p2) C [0, p*] it holds that w.h.p there
are no code words with weight in the interval N(p1, p2).

Remark 7 Note that the claim above does not exclude the case of codewords of sub-linear
weight. In fact,

o When {(min) = 2 a small (but positive) number of code-words of sub-linear weight
exists with high probability.

e When ¢(min) > 3 w.h.p. there are no code-words of sub-linear weight. The proof of
this fact is similar to expansion proofs we will see later.

0.1 Rate of LDPC codes

Recall that the rate of a linear code C' C Fy' is given by log||C|/logn. We have seen that
for any code with degree distribution A’, P" it holds that the rate R of the code satisfies:

A'(1)
R21- 50

We will now see that generally for LDPC codes, it holds that the rate is indeed given w.h.p
by
A'(1)

B STEY

One way to find an upper bound on the rate is to upper bound the maximum value of ¢(p).
It is natural to expect that the maximum is obtained at p = 1/2.
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Exercise 8 Find conditions on the degree distributions implying that the mazximum of ¢ is
obtained at p = 1/2.

Claim 9 Suppose that the mazimum of ¢ is obtained at p = 1/2 and that § > 0 the w.h.p.
it holds that

R<I1-—-

Proof: Using a first moment argument it suffices to show that

p(1/2) < log(2) (1 - ]f,g;) '

Next one verifies that p = 1/2 correspond to x = y = z = 1 in the formula for ¢. Plugging
this into the formula then gives:

o(1/2) =10 (1- 7).
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