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In the previous lecture we saw how to express the function ϕ(ρ) which is the normalized
log of the expected number of code words with relative weight ρ. This was given by the
formula:

ϕ(ρ) = sup
ξ∈{0,1}

inf
x≥0
y≥0
z≥0

{
−Λ′(1)H(ξ)− ρ log x− Λ′(1)ξ log(yz) +

lmax∑
l=2

Λl log(1 + xyl) +
Λ′(1)
P ′(1)

kmax∑
k=2

Pk log qk(z)

}

= −ρ log x− Λ′(1) log(1 + yz) +
lmax∑
l=1

Λl(1 + xyl) +
Λ′(1)
P ′(1)

kmax∑
k=2

Pk log qk(z),

where

ρ =
lmax∑
l=1

Λl
xyl

1 + xyl
y =

∑kmax
k=2 ρkP

−
k (z)∑kmax

k=2 ρkP
+
k (z)

z =
∑lmax

l=1 λlxyl−1/(1 + xyl)∑lmax
l=1 λl/(1 + xyl)

P±
k (z) =

(1 + z)k−1 ± (1− z)k−1

(1 + z)k + (1− z)k
.

In this lecture we will use the formula above to obtain short-distance properties of LDPC
codes. If there are no code words of weight greater than δn then for each pattern of up
to δn/2 errors we can recover the transmitted codeword correctly. This also implies that
if errors are introduced independently on each coordinate with probability δ′ < δ/2 then
w.h.p. the correct transmitted word can be recovered.

In order to derive short distance properties we will apply the formula above when

ρ → 0,

Looking at the equation for ρ we see that ρ → 0 implies that either x → 0 or y → 0. From
the equation for y we see that y → 0 implies z → 0. On the other hand x → 0 implies
that z → 0 by the equation for z and z → 0 implies y → 0 by the equation for y. We thus
conclude:

Corollary 1 When ρ → 0 we have y → 0 and z → 0 and therefore

y ∼
∑k(max)

k=2 ρk(k − 1)z∑k(max)
k=2 ρk

= ρ′(1)z.
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z ∼
λ`(min)xy`(min)−1∑

λ`
= λ`(min)xy`(min)−1,

and
ρ ∼ Λ`(min)xy`(min)−1.

From the corollary, it is clear that the short distance properties depend very strongly on the
minimal possible variable degree. We will discuss the three cases: `(min) = 1, `(min) = 2
and `(min) ≥ 3.

`(min) = 1 . In this case we obtain:

y ∼ ρ′(z), z ∼ λ1x, ρ ∼ Λ1xy

and therefore

Corollary 2

ϕ(ρ) = −1
2
ρ log ρ + O(ρ)

and therefore for each ρ the expected number of code words of weight ρ is exponential in n.

In fact one can obtain the fact that in the case `(min) = 1 there are many codewords of
small weight also with high-probability observing that

Claim 3 If `(min) = 1 then w.h.p. every codeword has Ω(N) code-words at distance 2 from
it.

The proof of the claim follows by observing that w.h.p there is a linear fraction of factor
nodes connected to variable nodes of degree 1 only.

`(min) = 2

Claim 4 If `(min) = 2 then ϕ(ρ) ∼ Aρ where

A = log
P ′′(1)2Λ2

P ′(1)Λ′(1)

The proof of this claim is left as an exercise (1 point)
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`(min) = 3

Claim 5 If `(min) = 3 then

ϕ(ρ) ∼ `(min)− 2
2

ρ log(ρ/Λ`(min)).

The proof of this claim is left as an exercise (1 point).

Small linear distances and sub-linear distances Using the previous two claims and
a first moment argument we obtain:

Corollary 6 Consider LDPC with `(min) ≥ 3 or `(min) = 2 and A < 0. Let ρ∗ be the first
non-trivial zero of ϕ. Then for any open interval (ρ1, ρ2) ⊂ [0, ρ∗] it holds that w.h.p there
are no code words with weight in the interval N(ρ1, ρ2).

Remark 7 Note that the claim above does not exclude the case of codewords of sub-linear
weight. In fact,

• When `(min) = 2 a small (but positive) number of code-words of sub-linear weight
exists with high probability.

• When `(min) ≥ 3 w.h.p. there are no code-words of sub-linear weight. The proof of
this fact is similar to expansion proofs we will see later.

0.1 Rate of LDPC codes

Recall that the rate of a linear code C ⊂ Fn
2 is given by log ||C|/ log n. We have seen that

for any code with degree distribution Λ′, P ′ it holds that the rate R of the code satisfies:

R ≥ 1− Λ′(1)
P ′(1)

.

We will now see that generally for LDPC codes, it holds that the rate is indeed given w.h.p
by

R = 1− Λ′(1)
P ′(1)

.

One way to find an upper bound on the rate is to upper bound the maximum value of ϕ(ρ).
It is natural to expect that the maximum is obtained at ρ = 1/2.
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Exercise 8 Find conditions on the degree distributions implying that the maximum of ϕ is
obtained at ρ = 1/2.

Claim 9 Suppose that the maximum of ϕ is obtained at ρ = 1/2 and that δ > 0 the w.h.p.
it holds that

R ≤ 1− Λ′(1)
P ′(1)

+ δ.

Proof: Using a first moment argument it suffices to show that

ϕ(1/2) ≤ log(2)
(

1− Λ′(1)
P ′(1)

)
.

Next one verifies that ρ = 1/2 correspond to x = y = z = 1 in the formula for ϕ. Plugging
this into the formula then gives:

ϕ(1/2) = log(2)
(

1− Λ′(1)
P ′(1)

)
.

2
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