Definition 1 Consider a finite set X, and a probability distribution over X^n such that for every $x \in X^n$,

$$P[x] = \frac{1}{Z} \prod_{a=1}^{m} \psi_a(x_{\partial a}),$$

where $\partial a \subseteq [n]$ and $\psi_a : X^{\partial a} \to R_+$. Define the bipartite graph F with n variable nodes on the left side and m factor nodes on the right side, where factor node a is connected to variable node i if $i \in \partial a$. We call F the factor graph of the probability distribution, and say that the distribution F-factorizes.

Instead of thinking of the factor graph F as a bipartite graph, we can think of it as a hypergraph with n vertices and m hyperedges where the hyperedge corresponding to factor a consists of the set of vertices ∂a.

Definition 2 For a factor graph F and three disjoint sets of variables A, B, and S, we say that S separates A from B in F if every path starting from $i \in A$ and ending in $i' \in B$ must intersect S.

Recall that a path in a factor graph is a sequence of variable nodes $i_1 = i, i_2, \ldots, i_r = i'$ where for all j it holds that $i_j, i_{j+1} \in \partial a$ for some factor node a. We say that this path starts at i and end at i'. This path intersects the set S if $i_j \in S$ for some j.

Definition 3 Consider a probability distribution over X^n and a hypergraph graph F on X. We say that the distribution is F-Markov if for all disjoint sets $A, B, S \subseteq [n]$ such that S separates A from B in F, we have

$$P[x_A, x_B|x_S] = P[x_A|x_S]P[x_B|x_S].$$

Theorem 4 If a distribution F-factorizes then it is F-Markov.

Proof: Exercise (1 point). □

The converse of the above theorem is not valid.
Proposition 5 Consider the complete graph F with $|X| \geq 2$ and $n \geq 5$ variables nodes or $|X| \geq 10$ and $n \geq 3$. This graph consists of all factor nodes of a with $|\partial a| = 2$. Then there exist distributions that are F-Markov, but do not F-factorize.

Proof: Let F be a complete graph on n vertices. We compare the dimension of all F-Markov distributions with the dimension of all F-factorable distributions.

Since F is complete, any distribution is F-Markov. Hence the dimension of F-Markov distributions on X^n is $|X|^n - 1$. On the other hand, for every edge a, the dimension of the set of all possible functions $\psi_a(\cdot)$ is $|X|^2 - 1$ up to the normalization of $\psi_a(\cdot)$. Thus the dimension of all F-factorable distributions is at most $(|X|^2 - 1)^{\binom{n}{2}}$. For $|X| \geq 2$ and $n \geq 5$ we have $|X|^n - 1 > (|X|^2 - 1)^{\binom{n}{2}}$. \(\square\)

Exercise 6 Assume F is the complete k-hypergraph with n nodes and $\binom{n}{k}$ hyperedges. What’s the smallest $n = n(k)$ for which F-Markov distributions are not necessarily F-factorable? (1–3 points)

Definition 7 A clique in a factor graph F is a collection of variable nodes $\{i_1, \ldots, i_k\}$ such that for every s, t there exists some ∂a containing both i_s and i_t.

Definition 8 The completion of F denoted by \overline{F} is a hypergraph containing F, where for every clique $\{i_1, \ldots, i_k\} \in F$ we have added $\{i_1, \ldots, i_k\}$ as a hyperedge (factor node) in \overline{F}.

Exercise 9 Show that $\overline{F} = F$. (1 point)

Theorem 10 (Clifford-Hammersley) For every factor graph F, if a distribution on X^n is F-Markov then the distribution \overline{F}-factorizes, provided every element of X^n has a positive probability.

Proof: Assume an F-Markov distribution on X^n. For every $x \in X^n$, define $g(x) = \log P[x]$. (Since x has positive probability, $g(x)$ is finite.) Fix an element $\alpha \in X$, and for every $A \subseteq [n]$ define $g_A(x) = g(y)$ where $y_i = x_i$ for $i \in A$ and $y_i = \alpha$ for $i \notin A$.

Now for every $A \subseteq [n]$, define

$$\psi_A(x) = \sum_{B \subseteq A} (-1)^{|A| - |B|} g_B(x).$$

Claim 1: $\psi_A(x)$ depends only on x_A.

Claim 2: $g(x) = \sum_{A \subseteq [n]} \psi_A(x)$.

Claim 3: if A is not a clique in F, then $\psi_A(x) = 0$. 2-2
We will prove these claims shortly. Note that Claims 2 and 3 imply that
\[P(x) = \exp(g(x)) = \prod_A \exp(\psi_A(x)), \]
where the product runs over all cliques \(A \) in \(F \). So Claim 1 shows that this is indeed an \(F \)-factorization of \(P \) proving the main statement of the theorem.

Claim 1 holds since by definition \(\psi_A(x) \) only depends on \(g_B(x) \) for \(B \subseteq A \), and \(g_B(x) \) only depends on \(x_B \).

Claim 2 can be verified directly:
\[
\sum_{A \subseteq [n]} \psi_A(x) = \sum_{A \subseteq [n]} \sum_{B \subseteq A} (-1)^{|A|-|B|} g_B(x) = \sum_{B \subseteq [n]} g_B(x) \sum_{A:B \subseteq A \subseteq [n]} (-1)^{|A-B|} = g_{[n]}(x) = g(x),
\]
because
\[
\sum_{A:B \subseteq A \subseteq [n]} (-1)^{|A-B|} = \begin{cases} 1 & \text{for } B = [n]; \\ 0 & \text{otherwise}. \end{cases}
\]

To prove **Claim 3**, assume \(A \subseteq [n] \) is not a clique in \(F \), that is, there exist \(i,j \in A \) such that there exists no \(a \) for which \(\{i,j\} \subseteq \partial a \). We write
\[
\psi_A(x) = \sum_{B \subseteq A - \{i,j\}} (-1)^{|A-B|} \left(g_B(x) - g_{B \cup \{i\}}(x) - g_{B \cup \{j\}}(x) + g_{B \cup \{i,j\}}(x) \right). \]

We now show that \(h_B(x) = 0 \) for all \(B \subseteq A - \{i,j\} \). Consider the event \(E \) that for \(z \in X^n \) randomly drawn from the \(F \)-Markov distribution, we have

- \(z_k = x_k \) for all \(k \in B \); and
- \(z_k = \alpha \) for all \(k \in [n] - B - \{i,j\} \).

Since \([n] - \{i,j\}\) separates \(i \) from \(j \), we know that under the condition that \(E \) occurs, the random variables \(z_i \) and \(z_j \) are independent. Therefore
\[
\exp(h_B(x)) = \frac{P[z_i = \alpha, z_j = \alpha | E] P[z_i = x_i, z_j = x_j | E]}{P[z_i = \alpha, z_j = x_j | E] P[z_i = x_i | E] P[z_j = x_j | E]} = 1.
\]

This proves **Claim 3**. \(\square \)

Exercise 11 (1 point) Prove or disprove that a distribution is \(F \)-Markov iff it is \(\overline{F} \)-Markov.
Exercise 12 (1 point) Write the factor graph / factorization for the $n \times n$ Ising model. Is the factorization unique?

Exercise 13 (1 point) Write the factor graph / factorization for the SAT formula

$$(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2) \land (x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2).$$