
STAT 206A: Gibbs Measures Fall 2006

Lecture 1

Lecture date: Aug 29 Scribe: Madhur Tulsiani

This lecture considers a few historical and motivating examples.

1 The Ising Model

The Ising model is used to model the spins of atoms in a physical system. A commonly
studied instance is the N ×N grid GN = (VN , EN ) with each vertex representing an atom.
Each atom i has a spin σi ∈ {−1, 1} and hence the configuration space is {−1, 1}VN . The
probability of each configuration is given by the distribution

P[σ] =
1
Z

∏
(u,v)∈EN

exp(βσuσv)

where β = 1/T , is the inverse temperature, which determines the randomness of the system.
Notice that

• β = 0 corresponds to the uniform distribution and σu, σv are independent for all u
and v.

• For β = ∞, the measure is uniform over the all-plus and all-minus configurations,
while all others are disallowed. Hence, σu = σv for all u and v.
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Figure 1: The Ising model

Also for the two dimensional grid, it is known that ∃ 0 < βC <∞ such that,
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• β < βC =⇒ E[σuσv] < exp(−c(β)d(u, v))

• β > βC =⇒ ∀N,∀u, v E[σuσv] ≥ ε(β)

where c(β) and ε(β) are positive functions of ε (but independent of N). Hence, the cor-
relation between the spins of two atoms experiences a “phase transition” from decaying
exponentially with the distance, to being present over arbitrarily long distances. Finally,
also notice that the above distribution has the so called “Markov Property” i.e. for every
partition of VN into disjoint sets I(inside), O(outside) and B(boundary) such that there are
no edges (u, v) ∈ EN with u ∈ I and v ∈ O, the configurations of I and O are independent,
given a configuration for B. Formally

P[σ(O) = X(O), σ(I) = X(I)|σ(B) = X(B)] =
P[σ(O) = X(O)|σ(B) = X(B)]P[σ(I) = X(I)|σ(B) = X(B)]

where σ(S) and X(S) are used to denote the restrictions of these vectors to the set S.

Exercise 1 (0.5 pts) Prove that the above distribution satisfies the Markov property.

Even though this is a random distribution over the configurations, the system itself is
completely defined. The next example introduces randomness in the description of the
system itself.

2 Spin Glasses

Spin glasses are defined on the same model as before (grid). However, the probability
distribution is given by

P[σ] =
1
Z

∏
(u,v)∈EN

exp(βJuvσuσv)

where each Juv ∈ −1, 1 is an independent random variable taking each value with proba-
bility 1/2. Hence, neighbors may be inclined towards having alike or different spins. The
maximum probability configuration is given by the solution to

max
∑

(u,v)∈EN

Juvσuσv = max
∑

Juv=1

σuσv −
∑

Juv=−1

σuσv

Finding such a configuration on a general graph is known as correlation clustering and is
known to be NP-complete. This is an example of a general phenomena: spin glasses turn
out to be much harder to analyze than Ising models. It is also an open problem whether
there is a phase transition in spin glass models. Note that by the symmetry of spin-glasses it
holds that E[EJ [σuσv]] = 0 for every u 6= v. However one may phrase the phase transition
in terms of the typical behavior. For example one way to formula the phase transition
problem is to ask if there exists βc s.t. for all β > βc it holds that: P [|EJ [σuσv]| > ε] > ε
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3 SAT formulas and Codes

A SAT formula (in CNF form) is a is a function ψ(X) on a set X of variables x1 . . . xn of of
the form c1 ∧ c2 ∧ . . ., where each ci (called a clause) and is of the form xi1 ∨ x̄i2 . . .. Each
xi ∈ {0, 1} and A ∨ B, A ∧ B are interpreted as max(A,B) and min(A,B) respectively.
Equivalently, we may think of the variables as being true or false and ∨, ∧ as the OR and
AND functions respectively. The problem is to find an assignment to the variables such
that the formula is satisfied.

We draw the “Factor Graph” of the SAT formula as a bipartite graph with one vertex ui

on the left for each variable xi and one vertex vj on the right for each clause cj . The edges
are defined by the containment of a variable in a clause i.e. (ui, vj) ∈ E iff cj contains xi

or x̄i.
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Figure 2: Factor graph for (x1 ∨ x2 ∨ x3) ∧ (x̄3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x5)

One can see that the uniform distribution over all satisfying assignments to the variables
satisfies a Markov property similar to the one in the Ising model i.e. if I,O and B partition
the set of all variables s.t. no clause contains variables form both I and O, then

P[XI = yI , XO = yO|XB = yB] = P[XI = yI |XB = yB]P[XO = yO|XB = yB]

Another example might is linear codes. These are defined by a set of linear constrains over
Z2, say the vectors x ∈ {0, 1}6, which satisfy

x1 + x2 + x3 = 0 (mod 2)
x4 + x5 + x6 = 0 (mod 2)

x1 + x4 = 0 (mod 2)

One may draw a factor graph for the above constraint system in the same way as for the
SAT formula, replacing the clause by an equation and defining edges similarly. The uniform
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distribution over the set of valid assignments to the variables factorizes in the same way as
in SAT. In general, we try to analyze large random objects (SAT formulas, codes etc.) and
look at distributions which factorize over graphs i.e. each vertex is correlated only with the
vertices to which it is connected.

4 Role of Trees

Trees are particularly interesting in studying these kinds of measures as it is possible to
explicitly calculate the probabilities of all the configurations on a tree. This also helps to
develop an intuition for other graphs. Trees are also useful in application, such as to model
evolution in biology.
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Figure 3: Ising model on a tree

Consider an Ising model distribution on a tree, with all the leaves (set B) fixed to spins
+1. Say we now want to compute the probability that the spin σr of the root is +1 (We
henceforth use + to mean +1 and - for -1). Thus, we want to compute P[σr = +|σB = +].
By Bayes’ rule

P[σr = +|σB = +]
P[σr = −|σB = +]

=
P[σB = +|σr = +] ·P[σr = +]
P[σB = +|σr = −] ·P[σr = −]

=
P[σB = +|σr = +]
P[σB = +|σr = −]

where the last equality follows by symmetry. Hence it suffices to calculate P[σB = +|σr = +]
and P[σB = +|σr = −]. Also,

P[σB = +|σr = +] =
∑

b1,b2∈{−,+}

P[σB = +, σv1 = b1, σv2 = b2|σr = +]

=
∑

b1,b2∈{−,+}

P[σB1 = +, σv1 = b1|σr = +] ·P[σB2 = +, σv2 = b2|σr = +]
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Finally

P[σB1 = +, σv1 = b1|σr = +] = P[σv1 = b1|σr = +] ·P[σB1 = +|σv1 = b1, σr = +]
= P[σv1 = b1|σr = +] ·P[σB1 = +|σv1 = b1]

The last equality follows from the fact that anything in the subtree rooted at v1 is indepen-
dent of r after conditioning on v1. Now P[σv1 = b1|σr = +] can be directly computed and
P[σB1 = +|σv1 = b1] is an expression of same type as we started with, only on a smaller
tree. Hence, one can compute the required probability by recursing down the tree.
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