STAT 206A: Polynomials of Random Variables

Lecture 4
Lecture date: September 8, 2005 Scribe: Henry Lin

1 The Hermite Polynomial and Fourier Coefficients

Let v be the 1-dimensional gaussian measure and f : R — R a function in L?(v) such that
the set of points € R where f(X) is discontinuous has measure 0. Consider the probability
measure {—1, 1} on n variables, where each variable equals -1 independently with probabil-
ity (1—6)/2 and equals +1 independently with probability (14+6)/2. Let fp,: {—1,1}" - R
be a function such that f,(x1,...,xn) = f(Q i (zi—0)//n(1l — 62) ), and consider the basis

of all symmetric! functions W/ (1, ..., z,,) = (1—62)7F/2 ()~ 1/2(ngn]:|5|:k [Licg(zi—0)).
From the previous lecture, we know that f,(z1,....,2n) = > p_g fn(k:)W,?(xl, weiy Tp) and

F(X) =0 f(k)hi(X), where fo(k) = (fo, Wi")g, f(k) = (f. 1), and hy is the normal-
ized kth Hermite polynomial. (See previous lecture for full definitions). We now prove the
following theorem:

Theorem 1 V k € N, lim, o0 fn(k) = f(k).

Proof: For notation it will be wuseful to define the random variable,
X, = Yii(z — 0)/y/n(l-06?%). To prove our theorem, we will prove
limn_wo(Wk(xl,.. n)s fn(:cl,.. :I:n)>9 = limy, 00 (A (X0), fr(21, ooy 2n))e =
Hmy, o0 (hi(Xn), £(Xn))o = (hi(X), £(X))4-

The second equality follows by definition as f,(x1,...,2,) = f(X,). The third
equality follows by the central limit theorem, which implies that for a fixed k,
limy, oo (b (Xn), fF(Xn))e = (hi(X), f(X))q- Therefore, we just need to prove

limy, oo (WE (21, ooy 20), fr(T1, s 20))o = limy oo (hi(X0), fa(1, s 2n))e.  To complete
the proof, we prove the following statement by induction on k, which implies the state-
ment above.

lim Eo[|(W (21, s @n), oo, WE(T1, ooy n)) — (ho(Xp), - hie(X3)) 2] =

n—oo

The base case is trivial, as W' (z1, ..., zn) = ho(Xy) = 1. The inductive step can be proved
by noting:

'By symmetric, we mean a function f, such that fn(21,...,2n) = fn(Zo(1), s To(n)) for any permutation
.
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1. By the central limit theorem, lim, .o (hi(Xy), hj(Xn))e = i ;

2. Wi(xy,...,xy,) is a symmetric polynomial of degree i. (See Footnote 1 for definition
of symmetric).

3. hi(Xy) and W/ (x1, ..., x,) have positive coefficient for all monomials of highest degree.

We leave the formal proof of the inductive step to the reader.

a

Example: To illustrate the use of this theorem, consider the majority function
fo(z1,..cszn) = Maj(xy, ...,x,) and the uniform measure {—1,1}j. Note that if we de-
fine f(X) = sgn(X), where

-1 if X <0
sgn(X)=¢ 0 ifX=0
+1 if X >0

then f,(z1,...,2n) = f((X 1, 2:)/v/n) and we can apply Theorem 1. Although computing
fn(k) is difficult, Theorem 1 implies that if we can compute f(k), then it will be a good
estimate of f,(k) for large n.

To compute f(k) = (, hi)~, first note that f is an odd function and hy, is an even function

when k is even. Therefore, f(k) = 0 for even k, and we only need to compute f(k) for odd
k. For odd k:
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FR) = (fhe)s = 2/ /OOOchc)dv(x)
= (=2/V2rk)) / h ik(e—xQ/Q)dx
) [

k

dk—l
(—2/V27k!) - (d:ck_l

— V/2/(xk) - Hi_a (0)
— V2R - (k= DY ED2 (k- 1)/2))

VTR = DY@ (k= 1)/2)2)
k-1 B
= V2/mh) \/ <<k - 1>/2> /%

V2 k) ) @1 r (k= 1)]2 ) /24
V2IE) 1k — D)2

I

(e /?)[5)

&Q

Q

In the third to last step, we use the approximation (m"}Q) ~ 2™\ /Tm /2.

With this estimate of f(k), it follows that Y vk f2(r) = 0(k~Y2?). Then since
Y oreo f2(r) = |f3 = 1, we can conclude Y o<k f2(r) = 1 — 0(k'/2) for large n. This
observation implies that the fourier coefficients of the majority function are largely concen-
trated on the coefficients of low degree polynomials.

2 Influence

2.1 Definition and Examples

Definition 2 Let f € L*(T]\, wi). The influence of the ith variable is defined as follows:

Ii(f) = Ery, ., p; [Vary,[f]]

Example: Let f:{—1,1}" — {—1,1} be a function, and let {—1,1}{ be our measure (i.e.
pi ={—1,1}¢ for all i € [n]). For x € {—1,1}", we define 2% to be the operation that flips
the ith coordinate of  (i.e. %' returns 2’ € {~1,1}", such that z; = —z; and 2} = x; for
all j # 4). It is not difficult to show the following lemma:



Lemma 3 L(f) = Py, [f(z) # £(a®).
Proof: Consider all the variables of x € {—1,1}" as fixed except the ith coordinate. Then

(

NNy
Va,, (/)] = { it

0 if f(z)

Jj@i)
x@i

)

When we no longer assume x; is fixed for j # ¢, then Var,,[f(x)] can be thought of as an
indicator random variable My that is 1 if f(z) # f(z®') and 0 otherwise. Then the proof
is trivial as:

Il(f) = EHj:j;&i Hj [Var“i [‘ﬂ]
EHj:j;rSi 2] [Mf]
= PHJ‘:#@- uilf (@) # f@®)]

Exercise 4 (1 point) Suppose f only attains values a and b, and our measure is {—1,1}}.
Write I;(f) in terms of a, b, 0, and Pr[f(x) # f(x®")].

Included below are some examples of influence. Unless otherwise stated, assume x1, ..., x,
n
are drawn from measure [ [ ; j;.

Example: Let f(x1,...,2,) = g(z1). Then applying the definition of influence, we have:

e Var,lg] ifi=1
Il(f)_{ 0 if i > 1

Example: Let f(x1,...,x,) = g1(z1) - g2(x2) - ... - gn(x). Then applying the definition of
influence and simplifying, we have:

Li(f) = Var,, 93] - H EM]' [932]
jiii

Example: Assuming measure {—1,1}f and f(z1,...,z,) = Maj(z1, ..., xy), then applying
the definition of influence and using Lemma 3, we have:

4-4



L(f) = Prp, .Y @) =0

JigFi

2/(mn) - (1+0(1))

Q

2.2 Influences and Expansions

Next, we prove a general theorem about influence. Consider a function f € L*(TT; wi),
where f(21,...,2n) = X g.5c[) f5(@1, s @n) = D0, f(J)Us(@1, ..., 2n). Although not explic-
itly stated, J is a multi-index of size n, Uy € Ul @ U? ® ... ® U™, and U' is assumed to be
a standard basis of y; for all I € [n]. (See previous lectures for more details).

Theorem 5 I;(f) = Y gcnics |fs3 = 3 ys0 F2(T)

Proof: To prove the theorem, we first show > e es |fs]3 = > T Ji0 f2(J). Note that

by definition fs = > ; ;c;, f(J) - Uy, where Jg is the set of multi-indices J such that
Jy #0forall k € S and J, = 0 for all K ¢ S. Then |fs]3 = D Jiueds f(J)?, and

ESQ[n]:iES |f5'|% = ZSQ[n]:iES ZJ:JEJS fQ(J) = ZJ:Ji#O f2(‘])

Now we only need to prove I;(f) = >_ ;. ;.40 f2(J). To prove this consider all variables other
than z; as fixed, and let us compute Var,,[f]:

Var,,[f] = Var,] f(J)UJ(a:l,...,a;n)—i— f(J)UJ(xl,...,xn)]

J,K:J; 20, K70

To get from the first equation to the second, we note that »_; ; _, f(J)UJ(xl, ey Tp) 18

constant when all variables except z; are fixed and E,, [} ;. ;. 4 F(NU (21, zn)] = 0
because we started with a standard basis. To get from the second line to the third, note
that the fourier coefficients f(J) are constant.

Finally, note that by orthogonality Enje[n] w0 - Ug] = 1if K = J and EHJ_E["] ;0T -
Uk] = 0 otherwise. = Now plugging in definitions, the theorem is easy to see:



L(f) = E]‘[j:j#uj[yarm[f” = Enj:j;tiﬂj[zJ,KiJi;éo,Kisz f(J)f(K) - Ey[Us - Ukl] =
Yo skcaizokirod (D) By [Ur Ukl = 325,40 f(J)?. 0
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