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Let (Ωj ,Fj , µj) be a separable probability space for each j ∈ {1, . . . ,m}, and let U j =

{uj
0, u

j
1, . . . } be a standard basis of L2(µj). Then the elements uI = u1

i1
⊗ · · · ⊗ um

im
for

I = {i1, . . . , im} ⊂ Nm form a standard basis for L2(Πµj).

Definition 1 For S ⊆ {1, . . . ,m}, let

L2
S = span(uI : in 6= 0 ⇐⇒ n ∈ S), and

L2
|S = functions depending only on the coordinates in S.

Lemma 2 (From last lecture.) For any S ⊂ [m], we have

L2
|S (Πµj) =

⊕

T⊆S

L2
T (Πµj).

Corollary 3 The spaces L2
S do not depend on the (standard) basis.

Proof: Proof by Induction on |S|: If |S| = 0, i.e., S = ∅, then L2
∅ = span(u1

0 ⊗ · · · ⊗ um
0 ) =

span(1), so it is independent of the basis. If |S| > 0, then L2
|S = LS ⊕ ⊕

T(S LT . Since

L2
|S does not depend on the basis (by definition), and L2

T does not depend on the basis for

T ( S by the inductive hypothesis, L2
S does not depend on the basis. (Recall the linear

algebra fact that A ⊕ B = A ⊕ B′ =⇒ B = B′. ) 2

For f ∈ L2(Πµj), denote f̂(I) := 〈f, uI〉. So f =
∑

I f̂(I)uI . Also, f =
∑

S⊆[m] fS where

fS is the projection of f onto L2
S.

Lemma 4

E[f ] = f̂(0, . . . , 0) = f∅,

cov(f, g) =
∑

I 6=(0,...,0)

f̂(I)ĝ(I) =
∑

S 6=∅
〈fS, gS〉

Question 5 (Asked by Omid.) What is LS for {−1, 1}n
0?
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Answer 6 The only standard basis for {−1, 1}0 is {1, x}. We can prove by induction that

LS = span
∏

i∈S

xi.

Example 7 Let ω = {−1, 1}n
0 . Let f be the majority function, i.e., f(x) =

maj(x1, . . . , xn) = sgn(x1 + · · ·+xn). Then f is antisymmetric, i.e., f(x) = f(x)−f(−x)
2 , so

f̂(S) = 0 if |S| is even. And f is transitive, i.e., f(x) = f(σ(x)) where σ is any permutation
in Sn, so f̂(S) only depends on |S|.

If n = 3, then f has an expansion f(x) = 1
2(x1 + x2 + x3 − x1x2x3).

Example 8 (Projective Geometry Example.)

x

x
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a
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Figure 1: “Projective plane” for Example 8

Let f : {−1, 1}6 → {−1, 1} be given by f(x) = Proj(x) =
∑

“lines” = xaxbxC + xaxBxc +
xAxbxc − xAxBxC)/2. The third monomial is always equal to the product of the first three,
so it cancels with one of the first three and the remaining two terms have the same sign.
Hence the only possible values of f are ±1.

Exercise 9 Prove that in order to fix the function, you have to set at least 5 variables.

Example 10 (Compositions.) We know the majority function on three variables, so we
can compute

f(x) =maj(x1x2,maj(x3, x1, x4),maj(x4, x5, x1))

=
1

2
(x1x2 + maj(x3, x1, x4) + maj(x4, x5, x1)) −

1

2
x1x2 maj(x3, x1, x4)maj(x4, x5, x1)

=
1

2
(x1x2 +

1

2
(x3 + x1 + x4 − x3x1x4) +

1

2
(x4 + x5 + x1 − x4x5x1)

− 1

2
x1x2

1

2
(x3 + x1 + x4 − x3x1x4)

1

2
(x4 + x5 + x1 − x4x5x1)
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Exercise 11 Find a function f : {−1, 1}36 → {−1, 1} with deg(f) = 9 such that you need
to set at least 25 variables in order to fix it.

Exercise 12 Find f : {−1, 1}n → {−1, 1} for arbitrarily large n of degree n
4 such that you

need to set at least 25
36n variables in order to fix it.

(The last three exercises together worth 5 points; The example is due to Oded Regev)

Hermite Expansion

Let γ be the one dimensional Gaussian measure, with density 1√
2π

e
−x

2

2 , and

L2(γ) = {f : R → R |
∫

R

|f(x)|2dγ(x) < ∞}.

Definition 13 The Hermit polynomials are

Hn(x) = (−1)ne
x
2

2

dn

dxn
e

−x
2

2 ,

and the normalized Hermit polynomials are

hn =
1√
n!

Hn.

Lemma 14 The function Hn (hence hn) is a polynomial of degree n.

Proof: Expand the derivative and note that the exponentials cancel and that the highest
degree (n) term does not cancel. 2

Lemma 15 The polynomials Hn (hence hn) form a linear basis of L2(Γ).

Proof: From the previous lemma, Hn’s form a basis for the space of all polynomials, and
the polynomials are dense in L2(γ). 2

Lemma 16 The normalized Hermit polynomials {hn} form a standard basis for L2(γ).

We need the following lemma for the proof.
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Lemma 17 The Hermit polynomials can be written explicitly as

Hn(x) = xn − n(n − 1)

1!2
xn−2 +

n(n − 1)(n − 2)(n − 3)

2!22
xn−4 + . . . .

Proof: This formula gives H0 = 1. Suppose the lemma holds for n ≥ 0. Then

Hn+1(x) = (−1)n+1e
x
2

2

dn+1

dxn+1
e

−x
2

2

= (−1)e
x
2

2

d

dx
(Hn(x)e

−x
2

2 )

= xHn(x) − d

dx
Hn(x).

Substituting the formula for Hn yields the correct formula for Hn+1. 2

By differentiating the RHS in the previous lemma, we get

d

dx
Hn(x) = nHn−1(x).

Proof:[Lemma 16] We already know that {hn} is a linear basis. By definition, h0 = 1. We
need to check orthogonality. First check that

〈Hn,H0〉 =
(−1)n

√
2π

∫

dn

dxn
e

−x
2

2 dx =

{

1 if n = 0
0 if n > 0

.

Now suppose m ≥ n > 0. Using integration by parts and induction,

〈Hn,Hm〉 =

∫

Hn(x)Hm(x)dγ(x)

=
(−1)m

√
2π

∫

Hn(x)
dm

dxm
e

−x
2

2 dx

=
(−1)m−1

√
2π

∫

d

dx
Hn(x)

dm−1

dxm−1
e

−x
2

2 dx

=
(−1)m−1n√

2π

∫

Hn−1(x)
dm−1

dxm−1
e

−x
2

2 dx

= n〈Hn−1,Hm−1〉

=

{

n! if n = m
0 if m > n

by induction.

2

Exercise 18 (2 points.) Prove that

Hn(x + y) =
n

∑

k=0

(

n

k

)

xkHn−k(y),
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Ex→γ [Hn(x + a)] = an for any constant a ∈ R.

Theorem 19 Let f ∈ L2(γ) with γ({x : f is not continuous at x}) = 0. Consider

{−1, 1}n
θ , and let fn(x1, . . . , xn) = f

(

∑

n

i=1
(xi−θ)√

n(1−θ2)

)

. Let f =
∑∞

k=0 f̂(k)hk, and fn =
∑n

k=0 f̂nwn
k where wn

k = 1
zk

∑

S:|S|=k

∏

i∈S(xi − θ) ∈ L2({−1, 1}n
θ ) and zk is such that

|wn
k | = 1.

Then, for every k, it holds that
lim

n→∞
f̂n(k) = f̂(k).

Next time, we will use this theorem to get an asymptotic expansion of the majority function.
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