STAT 206A: Polynomials of Random Variables 10

Lecture 10
Lecture date: Sept 29 Scribe: Sam Riesenfeld

This lecture uses notation defined in the previous lecture; see the notes for Sept 27 for
complete definitions and details. As a reminder, we summarize it here:

o CF:={f:{-1,1}" = {~1,1} : f depends on at most k coords}
o Forr >0, C(r) := {fecjg £ 38,0<|S| < f(S);éO}
o Ch0):={rech: f0)#£0} = {feck: Elf]#£0}

Let C,, be shorthand for C; .

We proved in the last lecture that C¥(0)\ {—1,1} C Cﬁ([% 1) and that for any f € CF(r),
we can find an influential variable in time ¢;n".

In this lecture, we deal with functions like Parity:{—1,1}" — {—1,1}, defined as
Parity(x1, xo,..., o) = x1 - T2 - - Ty, which is not contained in C, (r) for any r < n.

To do this, we establish a bijection between {f:{—1,1}" — {-1,1}} and
{F:{0,1}" — {0,1}} as follows:

F(Xl,XQ, - 7Xn) pp— 1 - f((_l)X1’ (—21)X2’ s (_l)Xg)

- f(1-2X5,1-2Xy,...,1—2X,)

= 5 .
In other words F = pf(¢~! x -+ x ¢~1) where ¢ : {—1,1} — {0,1} is the homomorphism
that takes —1 to 1, 1 to 0, and multiplication (-) to addition (¢). (The notation ¢~ x - - - x
¢~ ! indicates the inverse of ¢ applied to each coordinate.)

Note that for f € Cfi, the corresponding function F' is a polynomial over the finite field
GF(2) = Fo with degree degp, F' < k. We define the class

Pr(r) = {f eck . degp, F' < r for F' corresponding to f} .
Example 1 (Parity) Let f = x1---x, be the parity function. Then F = x1 ®xo® - Dxy,.

Notice that F is of low degree over Fo (f is in P,(1)), even though f has a high degree (n)
in the Fourier basis!

We recall that any function F':{0,1}" — {0,1} can be written as a sum of multi-linear
polynomials as follows:

F(Xy,.... X)) = P [[X ][00 - X)F(lies, 1aes, - 5 Ines):

SCln]i€S ¢S
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Claim 2 The class PE(r) can be learned in time n®" (using Gaussian elimination) or n“",
where w = 2.367 ... is the exponent for matriz multiplication.

Proof: If f € P¥(r), then F = Dscin as [lies Xi- To determine f, it suffices to deter-
IS|<r
mine the coefficients {ag}. Let v(n,r) be the number of variables, that is, the number of

coefficients. Then v(n,r) = (7) + (,",) + -+ + (;) < O(n"). Each sample of f gives a

r r—1
linear equation in the elements of {ag}. Since solving a system of w(n,r,d) that uniquely

determine v(n,r) variables takes time O(n“"), the remaining part of the proof of Claim 2
is to answer the question: How many such equations are needed to determine these v(n,r)
variables? See Claim 3. O

Claim 3 (Sub-claim of Claim 2) Let w(n,r,6) = 2"(v(n,r) + log }). Given w(n,r,d)
samples, the coefficients in {as} are determined uniquely except with probability §.

Proof: Let (ag) be an assignment to the variables that satisfies all the equations given by
the samples. Fix (bg) such that (bg) # (ag).

Exercise 4 (1pt; Prove by induction; This is called Schwarz-Zippel) If z is cho-
sen uniformly at random, then P{@ as[[;cqri = Pbs[[jcgzil <1-27".

So an assignment (bg), (bg) # (ag), satisfies all equations given by the samples with prob-
ability at most (1 —277)*(™9) Thus

P[3(bs), (bs) # (as), (bs) satisfies all equations]

< E[#(bg) # (ag) that satisfy all equations]

< o) (1 — g r)ylnr)

<.

Lemma 5 (“Lemma 1” in class) For every r, 1 < r < k, the following holds: every
f € CF belongs to one of the following families:

o {—1,1} (1)
o CHO\ {11} ST 2) )
. Ch(r) Q
o PE(k—r). (4)

+ ¢k log% learning algorithm for CF, with a = o

Claim 6 There is a cyn®*+01)
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Proof (Of Claim 6): Note that o > % We check that every f € CF falls into a class
that we can learn in the time listed in Lemma 5. (We ignore dependencies on ¢ here.)

e Class (1): obvious.

e Class (2): We showed last lecture that C¥(0) can be learned in time O(n%)

e Class (3) for r = ak: We showed last lecture that C¥(r) can be learned in time O(n"),
which is O(n®*) for r = ak. If f ¢ CF(r) for r = ak, then, as we shall see in the
proof of Lemma 5, the corresponding function F' is in P¥(k —r).

e Class (4) for r = ak: We showed during this lecture that P¥(k —r) can be learned in
time O(n®(*=7)), which is O(n®*) for r = ak.

g

Proof (Of Lemma 5): We need to show that if f ¢ C¥(r) and Ef = 0, then F €
PE(k — 7). For this proof, we assume that n = k, which is not constraining since n is not
relevant in the statement.

Since f & C.(r), we can write

F=> fS]]=

1S|>r i€s
Letg=f Hle x;. Notice that g has only low Fourier coefficients and can be written as
g= > FR\S]]=
|S|<k—r €S
Now we observe that the corresponding function G is
G=FaX10 ®X,,

and that degp, F' = degy, G, since adding X1 @ --- ® X,, does not change the degree in Fs.
The proof concludes with Lemma 7. O

Lemma 7 (“Lemma 2” in class) For every g:{—1,1}* — {—1,1} and corresponding
G :{0,1}% — {0,1}, that is, G = pg(p™' x --- x 1), degg g > degp, G.

Proof: Let us imagine for a moment that ¢:{—1,1} — {0,1}, ¢(z) = 15%, is a map into
R. Since ¢ is linear, (¢! x --- x ¢~!) is linear in each of the k coordinates. Since the maps
are linear, they don’t change the degree, and thus degp g = degr G. It therefore suffices to
show that degg G' > degp, G. We recall the trivial way of writing a 0, 1-valued function as
a polynomial. Over R, we have the equality

GX1,..Xp)= > G [] = [ -2 (5)
0

2€{0,1}F 1iz;=1  d:izi=

Taking equation (5) mod 2 can only reduce the degree. Assuming the next lemma, i.e. that
there is a unique multi-linear representation of G over R, we are done. O
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Lemma 8 G has a unique multi-linear representation over R.

Proof: Proof by induction on the dimension k. If £ = 1, then G is a linear function from
R to R and so we can write G(z) = ax + b for fixed constants a and b, which gives a unique
linear representation. Suppose the lemma holds for all £ < n. Let Kk = n+ 1. If G is
multi-linear, then we can write G(x1,...,2n, Tnt1) = Fi(x1, ..., 2n)Tne1 + Fo(z1, ..., 20),
where F} and F5 are multi-linear. If G had different multi-linear representations, then so
would Fj or F» (or both). O
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