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Lecture 10

Lecture date: Sept 29 Scribe: Sam Riesenfeld

This lecture uses notation defined in the previous lecture; see the notes for Sept 27 for
complete definitions and details. As a reminder, we summarize it here:

• Ck
n := {f :{−1, 1}n → {−1, 1} : f depends on at most k coords}

• For r > 0, Ck
n(r) :=

{
f ∈ Ck

n : ∃S, 0 < |S| ≤ r, f̂(S) 6= 0
}

• Ck
n(0) :=

{
f ∈ Ck

n : f̂(∅) 6= 0
}

=
{
f ∈ Ck

n : E[f ] 6= 0
}

Let Cn be shorthand for Cn
n .

We proved in the last lecture that Ck
n(0) \ {−1, 1} ⊆ Ck

n(d 2k
3 e) and that for any f ∈ Ck

n(r),
we can find an influential variable in time ckn

r.

In this lecture, we deal with functions like Parity :{−1, 1}n → {−1, 1}, defined as
Parity(x1, x2, . . . , xn) := x1 · x2 · · ·xn, which is not contained in Cn(r) for any r < n.

To do this, we establish a bijection between {f :{−1, 1}n → {−1, 1}} and
{F :{0, 1}n → {0, 1}} as follows:

F (X1, X2, . . . , Xn) :=
1− f((−1)X1 , (−1)X2 , . . . , (−1)X3)

2

=
1− f(1− 2X1, 1− 2X2, . . . , 1− 2Xn)

2
.

In other words F = ϕf(ϕ−1 × · · · × ϕ−1) where ϕ : {−1, 1} → {0, 1} is the homomorphism
that takes −1 to 1, 1 to 0, and multiplication (·) to addition (⊕). (The notation ϕ−1×· · ·×
ϕ−1 indicates the inverse of ϕ applied to each coordinate.)

Note that for f ∈ Ck
n, the corresponding function F is a polynomial over the finite field

GF (2) = F2 with degree degF2
F ≤ k. We define the class

Pk
n(r) :=

{
f ∈ Ck

n : degF2
F ≤ r for F corresponding to f

}
.

Example 1 (Parity) Let f = x1 · · ·xn be the parity function. Then F = x1⊕x2⊕· · ·⊕xn.
Notice that F is of low degree over F2 (f is in Pn(1)), even though f has a high degree (n)
in the Fourier basis!

We recall that any function F :{0, 1}n → {0, 1} can be written as a sum of multi-linear
polynomials as follows:

F (X1, . . . , Xn) =
⊕

S⊆[n]

∏
i∈S

Xi

∏
i6∈S

(1−Xi)F (11∈S , 12∈S , . . . , 1n∈S).
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Claim 2 The class Pk
n(r) can be learned in time n3r (using Gaussian elimination) or nωr,

where ω = 2.367 . . . is the exponent for matrix multiplication.

Proof: If f ∈ Pk
n(r), then F =

⊕
S⊆[n]
|S|≤r

aS
∏

i∈S Xi. To determine f , it suffices to deter-

mine the coefficients {aS}. Let v(n, r) be the number of variables, that is, the number of
coefficients. Then v(n, r) =

(
n
r

)
+

(
n

r−1

)
+ · · · +

(
n
0

)
≤ O(nr). Each sample of f gives a

linear equation in the elements of {aS}. Since solving a system of ω(n, r, δ) that uniquely
determine v(n, r) variables takes time O(nωr), the remaining part of the proof of Claim 2
is to answer the question: How many such equations are needed to determine these v(n, r)
variables? See Claim 3. 2

Claim 3 (Sub-claim of Claim 2) Let ω(n, r, δ) = 2r(v(n, r) + log 1
δ ). Given ω(n, r, δ)

samples, the coefficients in {aS} are determined uniquely except with probability δ.

Proof: Let (aS) be an assignment to the variables that satisfies all the equations given by
the samples. Fix (bS) such that (bS) 6= (aS).

Exercise 4 (1pt; Prove by induction; This is called Schwarz-Zippel) If x is cho-
sen uniformly at random, then P[

⊕
aS

∏
i∈S xi =

⊕
bS

∏
i∈S xi] ≤ 1− 2−r.

So an assignment (bS), (bS) 6= (aS), satisfies all equations given by the samples with prob-
ability at most (1− 2−r)ω(n,r,δ). Thus

P[∃(bS), (bS) 6= (aS), (bS) satisfies all equations]
≤ E[#(bS) 6= (aS) that satisfy all equations]

≤ 2v(n,r)(1− 2−r)ω(n,r,δ)

≤ δ.

2

Lemma 5 (“Lemma 1” in class) For every r, 1 ≤ r ≤ k, the following holds: every
f ∈ Ck

n belongs to one of the following families:

• {−1, 1} (1)

• Ck
n(0) \ {−1, 1} ⊆ Ck

n(d 2k

3
e) (2)

• Ck
n(r) (3)

• Pk
n(k − r). (4)

Claim 6 There is a ckn
αk+O(1) + ck log 1

δ learning algorithm for Ck
n, with α = ω

ω+1 .
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Proof (Of Claim 6): Note that α ≥ 2
3 . We check that every f ∈ Ck

n falls into a class
that we can learn in the time listed in Lemma 5. (We ignore dependencies on δ here.)

• Class (1): obvious.
• Class (2): We showed last lecture that Ck

n(0) can be learned in time O(n
2k
3 ).

• Class (3) for r = αk: We showed last lecture that Ck
n(r) can be learned in time O(nr),

which is O(nαk) for r = αk. If f 6∈ Ck
n(r) for r = αk, then, as we shall see in the

proof of Lemma 5, the corresponding function F is in Pk
n(k − r).

• Class (4) for r = αk: We showed during this lecture that Pk
n(k− r) can be learned in

time O(nω(k−r)), which is O(nαk) for r = αk.

2

Proof (Of Lemma 5): We need to show that if f 6∈ Ck
n(r) and E f = 0, then F ∈

Pk
n(k − r). For this proof, we assume that n = k, which is not constraining since n is not

relevant in the statement.

Since f 6∈ Ck(r), we can write
f =

∑
|S|>r

f̂(S)
∏
i∈S

xi.

Let g = f
∏k

i=1 xi. Notice that g has only low Fourier coefficients and can be written as

g =
∑

|S|<k−r

f̂([k] \ S)
∏
i∈S

xi.

Now we observe that the corresponding function G is

G = F ⊕X1 ⊕ · · · ⊕Xn,

and that degF2
F = degF2

G, since adding X1 ⊕ · · · ⊕Xn does not change the degree in F2.
The proof concludes with Lemma 7. 2

Lemma 7 (“Lemma 2” in class) For every g :{−1, 1}k → {−1, 1} and corresponding
G :{0, 1}k → {0, 1}, that is, G = ϕg(ϕ−1 × · · · × ϕ−1), degR g ≥ degF2

G.

Proof: Let us imagine for a moment that ϕ :{−1, 1} → {0, 1}, ϕ(x) = 1−x
2 , is a map into

R. Since ϕ is linear, (ϕ−1×· · ·×ϕ−1) is linear in each of the k coordinates. Since the maps
are linear, they don’t change the degree, and thus degR g = degR G. It therefore suffices to
show that degR G ≥ degF2

G. We recall the trivial way of writing a 0, 1-valued function as
a polynomial. Over R, we have the equality

G(X1, . . . Xk) =
∑

z∈{0,1}k

G(z)
∏

i : zi=1

xi

∏
i : zi=0

(1− xi). (5)

Taking equation (5) mod 2 can only reduce the degree. Assuming the next lemma, i.e. that
there is a unique multi-linear representation of G over R, we are done. 2
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Lemma 8 G has a unique multi-linear representation over R.

Proof: Proof by induction on the dimension k. If k = 1, then G is a linear function from
R to R and so we can write G(x) = ax+ b for fixed constants a and b, which gives a unique
linear representation. Suppose the lemma holds for all k < n. Let k = n + 1. If G is
multi-linear, then we can write G(x1, . . . , xn, xn+1) = F1(x1, . . . , xn)xn+1 + F2(x1, . . . , xn),
where F1 and F2 are multi-linear. If G had different multi-linear representations, then so
would F1 or F2 (or both). 2
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