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In the last class, we stated the following theorem about learnability of monotone functions.

Theorem 1 In the PAC learning model, the class of all monotone functions f : {−1, 1}n →
{−1, 1} is learnable in time 2O( 1

ε

√
n log n) log (1/δ).

This class we will prove the theorem and discuss some more results on learning functions of
a small number of variables. The reference for all these results can be found in the paper
[1]. Before proving the theorem, we need a couple of lemmas. The first lemma is about
approximating real valued functions by their signs.

Lemma 2 Let (Ω, µ) be a probability space and let f : Ω → {−1, 1} and g : Ω → R be two
functions such that |f − g|22 ≤ ε. If h = sgn(g) then

|f − h|22 ≤ 4ε

Proof: Let A denote the event that f and h disagree, viz.,

A = {x ∈ Ω : f(x) 6= h(x)}

Then

|f − h|22 = E
[
(f − h)2

]
= 4P(A)

On the other hand,

|f − g|22 ≥ P(A)

This is because whenever f and h disagree, g and f differ by at least 1, and this contributes
at least 1 to the difference. 2

The second lemma explains how to learn a function f which has the property that all but
a small fraction of its fourier coefficients are concentrated in a set W .
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Lemma 3 Supppose we are given W ⊆ 2[n] and a function f : {−1, 1}n → {−1, 1} such
that ∑

S∈W

f̂2
S ≥ 1− ε

Then there exists an algorithm A which, given parameters δ > 0, θ > 0 runs in time poly-
nomial in |W |, n, 1/θ and log(1/δ) and returns a function

g =
∑
S∈W

cSuS

such that

E
[
(f − g)2

]
≤ ε + θ

except with probability δ.

Proof: We learn our function f as follows. We take a set of N samples, where N is to be
specified later. We will show that N is a polynomial in |W |, n, 1/θ and log(1/δ). Using
these N samples, we estimate each Fourier Coefficient f̂S for each S belonging to W . We
claim that if |f̂S | > 1/nc for some constant c, then f̂S is estimated correctly, that is within
a factor of (1 + λ) of f̂S . This holds because we can use Chernoff Bounds to say that

P[|cS − f̂S | ≥ λf̂S ] ≤ exp (−Nλ2|1
2
− f̂S |)

≤ exp (−Nλ2/nc)

Using the Union Bound, the probability that all the coefficients in W are estimated correctly
is at most |W | exp (−Nλ2/nc). We want this probability to be at most δ. To ensure this,
we set

N =
nc

λ2
log

(
|W |
δ

)
(1)

Now we will estimate the value of λ needed to ensure the error guarantees.

E
[
(f − g)2

]
= E

[
(
∑
S

(f̂S − cS)uS(x))2
]

= E

[
(
∑
S∈W

(f̂S − cS)uS(x) +
∑
S /∈W

f̂SuS(x))2
]

≤ ε + |W |max
S∈W

|fS − cS |

≤ ε + |W |max(λ, 1/nc)
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The second expression is equal to θ for λ = θ/|W | (assuming that 1/nc is much smaller
than θ). Plugging in to Equation 1, the total number of samples needed is at most
|W |2nc

θ2 log
(
|W |
δ

)
. 2

Now we are ready to prove Theorem 1.

Proof:(Of Theorem 1) We know that all monotone functions f on {−1, 1}n satisfy the
following bound on the total influence of the variables.

n∑
i=1

Ii(f) ≤ c
√

n (2)

where c is a constant. Since the total influence can also be written as
∑

S |S|f̂2
S , this means

that for all ε > 0, ∑
|S|> c

√
n

ε

f̂2
S ≤ ε

Now if we pick W to be the set of all subsets of [n] with size at most c
√

n, and use the
algorithm described in the previous lemma, the theorem will follow. This is because the
size of W is

( n
c
√

n
ε

)
which is at most 2O(

√
n log n

ε
). 2

Definition 4 We define Ck
n to be the class of all boolean functions from {−1, 1}n → {−1, 1}

which depend on only k coordinates.

For the rest of the class, we will show a few lemmas on how to learn the functions in Ck
n

with a small number of samples. We will eventually show that Ck
n is learnable in time

nαk+θ(1) log (1/δ) where α = ω
1+ω , where ω = 2.37, the matrix multiplication constant.

Lemma 5 Suppose we have an algorithm A, which, when given a function f ∈ Ck
n, outputs

one of the variables with nonzero influence in time C(k)nγk log (1 δ). Then there is an
algorithm A′ which learns Ck

n in time C ′(k)nγk log (1/δ).

Proof: Algorithm A′ works by first running A to find a variable with nonzero influence.
Once such a variable is found, we fix its value, and run A′ again with the variable held
constant. This outputs another variable. Proceeding in this manner, we can obtain all the
influential variables by running A at most 2k times. 2

Definition 6 For 1 ≤ r ≤ k we define Ck
n(r) to be the subclass of functions in Ck

n for which
f̂S 6= 0, for some set S 6= ∅ of size at most r. We let Ck

n(0) be the class of non-balanced
functions.
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Lemma 7 Ck
n(0) \ {−1, 1} ⊆ Ck

n

(
d2k

3 e
)

Proof: Let r = d2k
3 e. Suppose for the sake of contradiction,

f = a0 +
∑
|S|>r

aSuS (3)

where uS =
∏

j∈S xj for a0 6= 0. Then

1 = f2 =

a0 +
∑
|S|>r

aSuS

2

= a2
0 +

∑
|S|>r

a2
S + 2a0

∑
|S|>r

aSuS +
∑

|S|,|S′|>r

aSaS′uSuS′

= a2
0 +

∑
|S|>r

a2
S + 2a0

∑
|S|>r

aSuS +
∑

|S|,|S′|>r

aSaS′uS∆S′

The last two terms must cancel as 1 is a constant. Note that the last term is actually a
weighted sum of Walsh functions for sets of size strictly less than r, since |S∆S′| ≤ 2(k−r) <
r, and the second last term is a weighted sum of Walsh functions for sets of size r or more.
Hence they cannot cancel unless f is a constant function. 2

Exercise 8 (1 pt) Is this lemma tight?

Note that there is an algorithm which, given a function f belonging to the class Ck
n(r),

outputs a variable which has nonzero influence in time C(k)nr log (1/δ). This can be easily
done by estimating the Fourier Coefficients of all sets of size at most r, and outputting
a variable j from a set S whose estimated Fourier Coefficient is at least 1

2k awayfrom
zero. The number of samples needed for this to succeed with probability at least 1 − δ is
C(k) log n log (1/δ).

References

[1] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning juntas. In Proceedings of the
35th Annual symposium on the theory of computing (STOC), pages 206–212, 2003.

9-4


