
STAT 206A: Polynomials of Random Variables 8

Lecture 8

Lecture date: Oct 22 Scribe: Ron Peled

1 PAC-Learning

In this lecture we will introduce the concept of PAC(Probably Approximately Correct)-
Learning and give some basic properties of it. This concept was first defined and discussed
by Valient in the 70’s and 80’s.

To define the concept, let C be a class of boolean valued functions on the domain Ω, that
is C ⊆ {f : Ω → {−1, 1}}. This is the class we wish to learn.

Let H be (another) class of boolean valued functions on Ω. H is called the hypothesis class,
we will approximate (in the sense to be defined) functions in C by functions in H.

In the following we will also have δ > 0 and ε > 0, in PAC, δ is related to Probably and ε
is related to Approximately.

Definition 1 We say that an algorithm A PAC-learns the class C using hypothesis H if
∀ε > 0, δ > 0, f ∈ C, D ∈ Prob(Ω)

1. A runs in time poly(sizeof(f), 1/δ, 1/ε).

2. With prob. ≥ 1− δ over the samples (Xi, f(Xi))i, where {Xi} is chosen IID from D,
A outputs an h ∈ H such that D[f(x) 6= h(x)] < ε.

Where sizeof(f) is a measure of the complexity of f , for example, the number of boolean
operations in a small circuit which evaluates f .

In the sequel, when we discuss PAC-learning we will not always adhere to the polynomial
time restriction but instead try to estimate the minimal time required to approximate a
class C (with some hypothesis class) in the above sense. When doing so, we shall often fix
some ε or δ instead of working with all the possibilities for them.

2 PAC learning of the uniform distribution

In all that follows we will restrict ourselves to the following special context, we will take
Ω = {−1, 1}n and D = U = the uniform distribution on {−1, 1}n.

8-1

Some special cases of PAC-learning are given names

1. Zero error learning : this is the case when ε = 0 and H = C.

2. α(n) weak learning : ε = 1/2− α(n) and α(n) = 1/poly(n).

3. Membership query (MQ) : When the algorithm is allowed to choose the {Xi} (there
is no D and δ is taken to be 0).

We will discuss two approaches to PAC-learning, information theoretical and running time.
The information theoretical approach sometimes gives a lower bound for which it is very
difficult to find an algorithm. The next example illustrates this approach.

Example 2 C = {f : {−1, 1}n → {−1, 1}}.

Claim 3 For ε = 0 we need 2n queries under the membership query model.

Proof: Clearly, the given function may differ from the function our algorithm outputs on
the unevaluated inputs. 2

Claim 4 For 1
2 > ε > 0, we need at least C(ε)2n queries under the membership query

model.

Proof: Fix X1, X2, . . . , Xs the inputs seen. Then the algorithm can output at most 2s

functions. Let B = {set of all possible output functions}.

Define, for a function f , Bε(f) = {g | U [f 6= g] < ε}. We can only learn the functions in
∪f∈BBε(f), hence (since for any f we have |Bε(f)| = |Bε(0)|) we need to have 2s|Bε(0)| ≥
22n

. But since

Lemma 5 |Bε(0)| ≤ 2(1−C(ε))2n

The claim follows. 2

Exercise 6 (1 Point) Prove the lemma, deduce that you cannot weakly learn all functions
(for any α(n)).

Exercise 7 (1 Point) Show that the class of all monotone functions has size double expo-
nential.

8-2

Proposition 8 The set of all monotone functions is c
n weakly learnable for some constant

c (and some H).

Proof: Take H = {1,−1, x1, x2, . . . , xn}. Divide into cases

1. Easy case, when f is not balanced. Take 1000n2

δ2 queries, if Êf ∈ [−1
8 , 1

8] then output
sgn(Êf). By large deviations, if Ef ∈ [− 1

16 , 1
16] then w.p.≥ 1− δ Êf ∈ [−1

8 , 1
8]. And

also if Ef /∈ [−1
4 , 1

4] then w.p.≥ 1− δ Êf /∈ [−1
8 , 1

8] and sgn(Ef) = sgn(Êf).

This shows that when f is so unbalanced that Ef /∈ [−1
4 , 1

4] then the above algorithm
performs as required, on the other hand, if f is relatively balanced so that Ef ∈
[− 1

16 , 1
16] then the above case will w.p. ≥ 1 − δ not be picked by the algorithm. In

the remaining case Ef ∈ ([−1
4 ,− 1

16) ∪ (1
16 , 1

4] it doesn’t matter if the above case is
executed by the algorithm, or the next case.

2. When Ef ∈ [−1
4 , 1

4] we get by Harper’s inequality that
∑

Ii(f) ≥ 1 (we actually get
something even better from the inequality). Hence there exists i with Ii(f) ≥ 1

n .
Since for monotone functions the {i}’th Fourier coefficient equals the i’th influence it
follows that P(f(x) 6= xi) ≤ 1

2 −
1
n , so our algorithm would perform well if it outputs

h = xi in this case. We will actually not neccessarily output this xi, but the xj we do
output will also work well for us as detailed in the following.

Take n4

δ4 samples and estimate for each j, P̂(f(x) = xj). If found j s.t. P̂(f(x) =
xj) ≥ 1

2 + 1
2n then output h = xj . By another large deviation calculation, w.p. ≥ 1−δ

we will find a j for which P(f(x) = xj) ≥ 1
2 + 1

4n and hence the algorithm works with
constant c = 1

4 in this case.

2

Proposition 9 The set of all monotone functions can be learned in time 1
δ 2O(

√
nlog(n)/ε).

The proof will be given in the next lecture.

8-3

