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Lecture 7

Lecture date: Sep 20 Scribe: Alexandra Kolla

In this lecture, we will prove the following theorem :

Theorem 1 Let f,g € L*([[ ) such that f is computed by an algorithm T that queries
x; w.p & and g =Y geyy gs where W is an anti - chain. The following relation holds:

(Cov[f,g)? < Var[f]- > 6(T) - Li(y)
i=1

Proof: If W = {0} then Cov|f,g] = 0 < (any positive number) and the theorem trivially
holds. We therefore make, w.l.o.g. the following assumptions:
e Since W is an anti - chain () ¢ W therefore E[g] = gy = 0.

e E[f] = 0 since neither Var[f] nor Cov|f,g| or 6;(T") change when shifted by a con-
stant.

e E[fg] > 0 (if not consider —f in the place of f).

With the above assumptions, Cov|[f, g] = E[(f — E[f]) - (¢ — E[g])] = E[fg] so it suffices to

show

Elfg] <|fl2-|>_8(T) - Li(g)
i=1

We consider our input = to be chosen in to steps :

1. First the algorithm chooses coordinates that determine the value of f. Let P be the
random subset of [n] that specifies the coordinates that are questioned by 7" and let
z p denote those coordinates.

2. Let xr denote the rest of the coordinates.

x = (zp,xR) is chosen according to the given probability measure.
For the purposes of the proof, we will use the following notation. Let f be a function on
our space depending on v and v:

Eu[f(u,v)] = E[f(u,v)[v]

7-1



We can now rewrite the expected value :
E(fg] = Egp[Ex,[f(zp,2R)9(zP, 2R)]] =
E.p[f(2p)Eap[g(zp, 2R)]] <

1oy Exr B2, (g(wp, )]

where the first line follows from the fact that f is independent of the values of coordinates
in R and the second line from the Cauchy -Schwartz inequality.
What remains to show in order for the proof to be complete is

E.,[E}, (9(zp.2r))] < Y 6i(T) - Li(g)
i=1

Define G*?(xgr) = g(zp,xr) to be a random function conditioned on zp. le. we fix
value for xp and for this value G*# is a function depending only on xr. By definition,

E2 [(9(xp, zr))] = B2, [(G"F (xR))].

From previous lectures, given xp is fixed, we can write G*P as an orthogonal sum
xXr
g(zp,xr) = G"F =} gc),scr Gg - Therefore,

E2 (G(r) =IGy"B= Y 1GFB- Y IG¥B< Y. IG¥BE- Y 1G¥B

SC[n],SCR 0#£SC[n],SCR Sc[n],SCR SCW,SCR
(1)
since () ¢ W.
Now, we take expected values over xp and we observe:
Expl Y |G§ 5] = Eup[Eunlg’(p, 2p)]] = l|9l3 (2)
ScC[n],SCR

We will now try to express the quantity > gy g |G's” |2 in terms of the orthogonal pro-
jections gg. For the function g(xp,xr) it holds g = ZSC[n] gs. Fixing zp, we get:

g(xp,xr) = Y gs(ep,ar) = Y gs(@p,zr)+ Y gs(zp,wR)

ScCln] SC[n],SNP=0 SC[n],SNP#0D

Now, observe that for SN P # () the terms gs(xp,zg) are functions that live in the space
L%m r therefore, they can be decomposed into an orthogonal sum gs = > ¢/ S.S'CR h's where
h's denote the projections onto the corresponding subspace. Altogether, from the expression
of g (fixing zp) we get:

glep,zr)= Y gs(zp,zr)+ Y > b

SCn],SNP=0 SC[n],SNP#£0) S’CS,S'"CR
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By the assumption of the theorem, g = > 4.1y g5 50 we only need to look at subsets S C [n]
such that S € W. We distinguish the following two cases:

1. SNP = (. Then S appears in the decomposition of g(xp,-) and contributes the term
gS(xpa ) .

2. SN P #0. Then S contributes in the decomposition the term 3 g g 5 Is. None
of the S" C S are in W so the total contribution is 0.

Altogether now we have :

Yo G = > gs(zp,ar),

SCW,SCR SEW,SNP=()
and therefore
YooGEE= > lgsh (3)
SeW,SCR SEW,SNP=0

Let Ag be the event that we query none of the coordinates in S and Bg the event that we
query at least one coordinate in S. From (3) we get

E..[ Y |G¥BI =Y PlAsllgsls (4)

SeW,SCR Sew

From (1) using (2) and (4) we get :

E,.[E2, (G (zr)]] < D lgsl3 — Y PlAs]lgsls =

Sew Sew
Y PBsllgsls < Y lgslh- (D0 =) D losls =D d:lig)
Sew Sew €S 1€S S1eS

where the last equation follows from the definition of influence.
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