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In this lecture, we will prove the following theorem :

Theorem 1 Let f, g ∈ L2(
∏

µi) such that f is computed by an algorithm T that queries
xi w.p δi and g =

∑
S∈W gS where W is an anti - chain. The following relation holds:

(Cov[f, g])2 ≤ Var[f ] ·
n∑

i=1

δi(T ) · Ii(g)

Proof: If W = {∅} then Cov[f, g] = 0 ≤ (any positive number) and the theorem trivially
holds. We therefore make, w.l.o.g. the following assumptions:

• Since W is an anti - chain ∅ /∈ W therefore E[g] = ĝ∅ = 0.

• E[f ] = 0 since neither Var[f ] nor Cov[f, g] or δi(T ) change when shifted by a con-
stant.

• E[fg] ≥ 0 (if not consider −f in the place of f).

With the above assumptions, Cov[f, g] = E[(f −E[f ]) · (g−E[g])] = E[fg] so it suffices to
show

E[fg] ≤ |f |2 ·

√√√√ n∑
i=1

δi(T ) · Ii(g)

We consider our input x to be chosen in to steps :

1. First the algorithm chooses coordinates that determine the value of f . Let P be the
random subset of [n] that specifies the coordinates that are questioned by T and let
xP denote those coordinates.

2. Let xR denote the rest of the coordinates.

x = (xP , xR) is chosen according to the given probability measure.
For the purposes of the proof, we will use the following notation. Let f be a function on
our space depending on u and v:

Eu[f(u, v)] = E[f(u, v)|v]
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We can now rewrite the expected value :

E[fg] = ExP [ExR [f(xP , xR)g(xP , xR)]] =

ExP [f(xP )ExR [g(xP , xR)]] ≤

|f |2
√

ExP [E2
xR

(g(xP , xR))]

where the first line follows from the fact that f is independent of the values of coordinates
in R and the second line from the Cauchy -Schwartz inequality.
What remains to show in order for the proof to be complete is

ExP [E2
xR

(g(xP , xR))] ≤
n∑

i=1

δi(T ) · Ii(g)

Define GxP (xR) = g(xP , xR) to be a random function conditioned on xP . I.e. we fix
value for xP and for this value GxP is a function depending only on xR. By definition,
E2

xR
[(g(xP , xR))] = E2

xR
[(GxP (xR))].

From previous lectures, given xP is fixed, we can write GxP as an orthogonal sum
g(xP , xR) = GxP =

∑
S⊂[n],S⊂R GxP

S . Therefore,

E2
xR

(GxP (xR)) = |GxP

∅ |22 =
∑

S⊂[n],S⊂R

|GxP
S |22−

∑
∅6=S⊂[n],S⊂R

|GxP
S |22 ≤

∑
S⊂[n],S⊂R

|GxP
S |22−

∑
S⊂W,S⊂R

|GxP
S |22

(1)
since ∅ /∈ W .
Now, we take expected values over xP and we observe:

ExP [
∑

S⊂[n],S⊂R

|GxP
S |22] = ExP [ExR [g2(xP , xR)]] = ‖g‖2

2 (2)

We will now try to express the quantity
∑

S⊂W,S⊂R |GxP
S |22 in terms of the orthogonal pro-

jections gS . For the function g(xP , xR) it holds g =
∑

S⊂[n] gS . Fixing xP , we get:

g(xP , xR) =
∑

S⊂[n]

gS(xP , xR) =
∑

S⊂[n],S∩P=∅

gS(xP , xR) +
∑

S⊂[n],S∩P 6=∅

gS(xP , xR)

Now, observe that for S ∩ P 6= ∅ the terms gS(xP , xR) are functions that live in the space
L2

S∩R therefore, they can be decomposed into an orthogonal sum gS =
∑

S′⊂S,S′⊂R h′S where
h′S denote the projections onto the corresponding subspace. Altogether, from the expression
of g (fixing xP ) we get:

g(xP , xR) =
∑

S⊂[n],S∩P=∅

gS(xP , xR) +
∑

S⊂[n],S∩P 6=∅

∑
S′⊂S,S′⊂R

h′S
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By the assumption of the theorem, g =
∑

S∈W gS so we only need to look at subsets S ⊂ [n]
such that S ∈ W . We distinguish the following two cases:

1. S ∩P = ∅. Then S appears in the decomposition of g(xP , ·) and contributes the term
gS(xP , ·).

2. S ∩ P 6= ∅. Then S contributes in the decomposition the term
∑

S′⊂S,S′⊂R h′S . None
of the S′ ⊂ S are in W so the total contribution is 0.

Altogether now we have : ∑
S⊂W,S⊂R

GxP
S =

∑
S∈W,S∩P=∅

gS(xP , xR),

and therefore ∑
S∈W,S⊂R

|GxP
S |22 =

∑
S∈W,S∩P=∅

|gS |22 (3)

Let AS be the event that we query none of the coordinates in S and BS the event that we
query at least one coordinate in S. From (3) we get

ExP [
∑

S∈W,S⊂R

|GxP
S |22] =

∑
S∈W

P[AS ]|gS |22 (4)

From (1) using (2) and (4) we get :

ExP [E2
xR

[GxP (xR)]] ≤
∑
S∈W

|gS |22 −
∑
S∈W

P[AS ]|gS |22 =

∑
S∈W

P[BS ]|gS |22 ≤
∑
S∈W

|gS |22 · (
∑
i∈S

δi) = (
∑
i∈S

δi) ·
∑

S:i∈S

|gS |22 =
∑

δiIi(g)

where the last equation follows from the definition of influence.

2
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