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1 Continuation of Harper’s Theorem

Beginning this lecture we are in the middle of proving Harper’s theorem. A quick review of
notation follows, see previous lecture’s notes for more detail.

A ⊆ {0, 1}n

Lm := First m elements of {0, 1}n in lexagraphical order

Ψ(A) := The size of the boundary edge set of A (see previous lecture’s notes for more detail)

Ci(A) := ith compression operator applied to A (again, see previous lecture’s notes for more
detail)

Theorem 1 (Harper) Among all sets of size m, Ψ is minimized only at Lm.

We were proving the theorem using three lemmas, the first two were proven in the previous
lecture.

Lemma 2 Ψ(Ci(A)) ≤ Ψ(A)

Lemma 3 The compression operation stabilizes. That is after repeated application we will
arrive at a set A so that for 0 ≤ i ≤ n, Ci(A) = A.

Proof: We look at the function Φ(A) =
∑

x∈A x (where we treat an elements of {0, 1}n as
integers). This function decreases with application of Ci, and strictly decreases if Ci(A) 6= A.
Because Φ(A) only takes positive integer values, it must stabilize at some point. 2

Lemma 4 If Ci(B) = B for all i, then either

• B = Lm OR

• M = 2n−1 and B = Lm−1 ∪ {(1, 0, 0, . . . , 0)}
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Proof: In the cases that every element with x1 = 0 belongs to B, we are done. For if C1

does not change B, it must be Lm. For the same reason, in the cases that no element with
x1 = 1 belongs to B, we are done.

This leaves us with the cases were some element where x1 = 1 belongs to B and some
element with x1 = 0 does not belong to B. So by the stability of B we have that that
0 < |B1(1)| ≤ |B0(1)| < 2n−1.

We first show that |B1(1)| is less than 2. For the sake of contradiction assume that
|B1(1)| contains more than 1 element. By the stability of C1, B contains (1, 0, 0, . . . , 0)
and (1, 0, 0, . . . , 1), but (0, 1, 1, . . . , 1) does not belong to B. However, Cn would then move
(1, 0, 0, . . . , 1) to (0, 1, 1, . . . , 1) or below. This contradicts the stability of B by actions of
Ci.

The next case is where |B1(1)| = 1 but |B0(1)| ≤ 2n−1 − 2. It follows similarly to the
aforementioned case that if |B0(1)| ≤ 2n−1 − 2 then by applying Cn to B the element in
B1(1) will fall to B0(1). This is because (1, 0, 0, . . . , 0) must be the element of B1(1) and
that (0, 1, 1, . . . , 1, 0) must not be an element of B0(1).

The final case is where |B1(1)| = 1 and |B0(1)| = 2n−1 − 1. This is easily seen to be the
exception case in the statement of the lemma.

2

We note that all that is left to prove Harper’s Theorem is to show that for m = 2n−1

Ψ(Lm) < Ψ(Lm−1 ∪ {(1, 0, . . . , 0)}. This is easily done.

Corollary 5 If A is of size m, then Ψ(A) ≥ m(n− log2 n). (Recall that m ≤ 2n−1.)

Proof: We will show that Ψ(Lm) ≥ m(n − log2 n) by induction on n. The base case is
trivial, so we proceed to the inductive step.

m ≤ 2n−2 In this case the inductive step gives us a bound for Ψn−1(Lm).

We notice that if we look at Lm in {0, 1}n but restrict our view to edges in {0, 1}n−1

the the number of edges is Ψn−1(Lm). There are m edges when we look at the new
coordinate. So the number of edges is ≥ Ψn−1(Lm) + m ≥ m(n− 1− log2 m) + m =
m(n− log2 n).

2n−2 + 1 ≤ m ≤ 2n−1 This case is only slightly trickier. Here we cannot ask about
Ψn−1(Lm). But we can notice that if we look at Lm in {0, 1}n but restrict our view
to edges in {0, 1}n−1 the the number of edges is Ψn−1(Lm) = Ψn−1(L2n−1−m). There
are again m edges when we look at the new coordinate. So the number of edges is
m + Ψn−1(L2n−1−m) = m + (2n−1 − m)(n − 1 − log2(n − 1)) ≥ m(n − log2 m). The
last step follows because m ≥ 2n−1 −m.
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2 Influence in terms of the probability of reading the input

We now look influences in terms of the probability of needing to read a particular variable
in the input. We first define some notation:

• Let f ∈ L2(
∏n

i=1 µi)

• Let T be a randomized algorithm that evaluates f (and is always correct)

• Let δi(T ) := the overall probability of querying input i (over the randomness of the
input and the randomness of T )

• ∆ :=
∑n

i=1 δi(T )

Exercise 6 For 1 point. f : {−1, 1}n
0 → {−1, 1}.

• Let f =
∏

xi. How many bits are needed to evaluate f? What is the minimum possible
value for ∆(T )?

• Let f = Rec-Maj3. Show that 2k ≤ ∆(f) ≤ (2.5)k.

Theorem 7 (Schramm, Steif; O’Donnell, Saks, Schramm, Servidio) Let f, g ∈ L2(
∏

µi),
T compute f , W be an anti-chain, and g =

∑
S∈W gS (where gS is computed using only

coordinates in S) then
(Cov[f, g])2 ≤ Var[f ]

∑
i

δi(T )Ii(g)

We say that W ⊆ 2[N ] is an anti-chain W if for all s1, s2 ∈ W , s1 is not a proper subset of
s2.

Corollary 8 f : {−1, 1}n
0 → R then∑

〈f, U{i}〉 ≤
√

Var[f ]
√

∆(T )

in particular, if the range of f is {−1, 1} and f is monotone, then

n∑
i=1

Ii(f) ≤
√

Var[f ]
√

∆(T )
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Proof:[of Corollary] For the first part, just let g =
∑n

i=1 U{i}. Then it is easy to see that
Ii(g) = 1 for all i.

For the second part we simply note that for monotone functions from {−1, 1}n
0 → {−1, 1}

we have that Ii(f) = 〈u{i}, f〉. 2

This corollary improves the easily verifiable bound that
∑

Ii ≤
∑

δi.

Example 9 Let f : {−1, 1}n
0 → {−1, 1} and define f such that f = 1 if x1 = x2 = · · · =

xn = 1 and f = 0 otherwise. Then let T be the obvious algorithm that looks at x1, then
looks at x2, etc. and rejects if it ever sees in input that is 0 and accepts if they are all equal
to 1.

• ∆ ≈ 2 (actually = 2− n−1
2n−1 )

•
∑

Ii ≤
√

Var[f ] · 2 ≤ c · 2−n/2

2.1 Another Application

Let y =
∑

S:|S|=k f̂(S)Us and let δ(T ) = maxi δi(T ). Then

(Cov[f, g])2 ≤ Var[f ] ·
n∑

i=1

(
δi(T ) ·

∑
S:i∈S

f̂2(S)

)
(
∑

S:|S|=k

f̂2(S))2 ≤ Var[f ] · k · δ(T ) ·
∑

S:|S|=k

f̂2(S)

∑
S:|S|=k

f̂2(S) ≤ k ·Var[f ] · δ(T )

So complex functions (where δ(T ) is small) have complex f̂ (a lot of mass on the tail)
because ∑

S:|S|≤k

f̂2(S) ≤ k(k − 1)
2

Var[f ] · δ(T )
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