STAT 206A: Polynomials of Random Variables Harper's Thm; Prob. of Reading Input

Lecture 5

Lecture date: Sept 15 Scribe: Grant Schoenebeck

1 Continuation of Harper’s Theorem

Beginning this lecture we are in the middle of proving Harper’s theorem. A quick review of
notation follows, see previous lecture’s notes for more detail.

AC{0,1}"
L, := First m elements of {0,1}" in lexagraphical order
W(A) := The size of the boundary edge set of A (see previous lecture’s notes for more detail)

C;(A) := ith compression operator applied to A (again, see previous lecture’s notes for more
detail)

Theorem 1 (Harper) Among all sets of size m, VU is minimized only at Ly, .

We were proving the theorem using three lemmas, the first two were proven in the previous
lecture.

Lemma 2 ¥ (C;(A)) < ¥(A)

Lemma 3 The compression operation stabilizes. That is after repeated application we will
arrive at a set A so that for 0 <i<mn, C;(A) = A.

Proof: We look at the function ®(A4) =3 ., = (where we treat an elements of {0,1}" as
integers). This function decreases with application of C;, and strictly decreases if C;(A) # A.
Because ®(A) only takes positive integer values, it must stabilize at some point. O

Lemma 4 If C;(B) = B for all i, then either

e B=1,, OR

e M=2""1and B= L,,_1U{(1,0,0,...,0)}
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Proof: In the cases that every element with x1 = 0 belongs to B, we are done. For if C
does not change B, it must be L,,. For the same reason, in the cases that no element with
x1 = 1 belongs to B, we are done.

This leaves us with the cases were some element where 1 = 1 belongs to B and some
element with 1 = 0 does not belong to B. So by the stability of B we have that that
0 < |B1(1)] < |Bo(1)] < 2» L

We first show that |Bj(1)| is less than 2. For the sake of contradiction assume that
|B1(1)| contains more than 1 element. By the stability of C;, B contains (1,0,0,...,0)
and (1,0,0,...,1), but (0,1,1,...,1) does not belong to B. However, C,, would then move
(1,0,0,...,1) to (0,1,1,...,1) or below. This contradicts the stability of B by actions of
C;.

The next case is where |B1(1)| = 1 but |Bg(1)| < 2"~! — 2. It follows similarly to the
aforementioned case that if |By(1)| < 2"~! — 2 then by applying C,, to B the element in
Bi(1) will fall to Byp(1). This is because (1,0,0,...,0) must be the element of B;(1) and
that (0,1,1,...,1,0) must not be an element of By(1).

The final case is where |B;(1)| = 1 and |Bg(1)| = 2"~! — 1. This is easily seen to be the
exception case in the statement of the lemma.

a

We note that all that is left to prove Harper’s Theorem is to show that for m = 277!
U(Ly) < ¥(Lpyp—1 U{(1,0,...,0)}. This is easily done.

Corollary 5 If A is of size m, then W(A) > m(n —logyn). (Recall that m < 2" 1.)

Proof: We will show that W(L,,) > m(n — logyn) by induction on n. The base case is
trivial, so we proceed to the inductive step.

m < 2"~2 In this case the inductive step gives us a bound for W,,_1(L,,).

We notice that if we look at Ly, in {0,1}" but restrict our view to edges in {0,1}" !
the the number of edges is V,,_1(L;,). There are m edges when we look at the new
coordinate. So the number of edges is > ¥,,_1(L,,) + m > m(n — 1 —logom) + m =
m(n —logyn).

272 1 1 <m < 2" ! This case is only slightly trickier. Here we cannot ask about
U,,_1(Lm). But we can notice that if we look at L, in {0,1}" but restrict our view
to edges in {0,1}"~! the the number of edges is ¥,,_1(Ly,) = ¥p,_1(Lon-1_,,). There
are again m edges when we look at the new coordinate. So the number of edges is
m+ Wy 1(Lon-1_,,) = m+ (2" —m)(n — 1 —logy(n — 1)) > m(n — logym). The
last step follows because m > 2"~1 —m.
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2 Influence in terms of the probability of reading the input

We now look influences in terms of the probability of needing to read a particular variable
in the input. We first define some notation:

o Let f € Lo([[i; pa)
e Let T be a randomized algorithm that evaluates f (and is always correct)

e Let §;(T) := the overall probability of querying input i (over the randomness of the
input and the randomness of T")

o Ai=37100:(T)
Exercise 6 For 1 point. f:{-1,1}{ — {—1,1}.

o Let f =[]xi. How many bits are needed to evaluate f? What is the minimum possible
value for A(T')?
e Let f = Rec-Majs. Show that 28 < A(f) < (2.5)*.
Theorem 7 (Schramm, Steif; O’Donnell, Saks, Schramm, Servidio) Let f,g € Lo(]] i),

T compute f, W be an anti-chain, and g = ) goy 9s (where gs is compuled using only
coordinates in S) then

(Cov[f,g))* < Var(f] }_ &(T)L(9)

We say that W C 2Nl s an anti-chain W if for all s1,s2 € W, s1 is not a proper subset of
S9.

Corollary 8 f:{—1,1}( — R then

> (f.Uy) < v/ Var[f]\/A(T)

in particular, if the range of f is {—1,1} and f is monotone, then

SO L(f) < v/Var[fly/AT)
=1



Proof:[of Corollary] For the first part, just let g = > | Ug;y. Then it is easy to see that
I;(g) = 1 for all i.

For the second part we simply note that for monotone functions from {—1,1}y — {—1,1}
we have that I;(f) = (ug, f). O

This corollary improves the easily verifiable bound that Y I; <> ;.

Example 9 Let f: {—1,1}§ — {—1,1} and define f such that f =1 ifx; =29 =--- =
T, = 1 and f = 0 otherwise. Then let T be the obvious algorithm that looks at x1, then

looks at xa, etc. and rejects if it ever sees in input that is 0 and accepts if they are all equal
to 1.

e A2 (actually =2 — ;7;11)

e S I; < /Var[f] -2 < ¢-277/?

2.1 Another Application

Let y = Y gy / (S)Us and let §(T') = max; 6;(T). Then

(Covlf,g)? < Var[f]- (MT)- ZP(S))
1

i= S:es
(>0 FA8))? < Var[f]-k-o(T)- Y FA(S)
S:|S|=k S:|S|=k
Y. AS) < k-Varf]-§(T)
S:|S|=k

So complex functions (where §(T) is small) have complex f (a lot of mass on the tail)
because

> 79 < "Dy o)

S:|S|<k



