
STAT 206A: Polynomials of Random Variables 2

Lecture 2

Lecture date: September 1, 2005 Scribe: Richard Liang

In this lecture, we discuss the space L2(µ) of square-integrable functions on a probability
space (Ω,F , µ), and introduce the notions of a standard basis for this space, and of tensor
products.

1 L2(µ)

Define our probability space (Ω,F , µ). Let f be a random variable on this space, and we
outline some notation.

Ef =
∫

Ω
fdµ

|f |2 =

√∫
Ω
f2dµ

Var f = |f −Ef |22
Cov(f, g) = E((f −Ef)(g −Eg))

〈f, g〉 = E(fg)

Definition 1 L2(µ) = {f : Ω → R, |f |2 <∞}; that is, L2(µ) is the space of square-
integrable random variables on the space (Ω,F , µ).

Example 2 Let Ω be a finite set, taking F = 2Ω, and let the measure µ be non-degenerate,
so that µ(ω) > 0 for all ω ∈ Ω. In this case, L2(µ) is just (R|Ω|, | · |2), since any real-valued
function on a finite set is square-summable.

2 Standard bases

We next define the notion of a standard basis.

Definition 3 A subset B = {u0, u1, u2, . . .} of L2(µ) is a standard basis of L2(µ) if:
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• the functions ui are orthonormal;

• and u0 = 1.

If B is a standard basis, then for a separable space, by the orthonormality if dim(L2(µ)) = ∞
and f ∈ L2(µ), then

f =
∞∑
i=0

〈f, ui〉ui

(that is, ∣∣∣∣∣f −
n∑

i=0

〈f, ui〉ui

∣∣∣∣∣
2

→ 0

as n→∞). We will only consider separable spaces.

It is well known that if L2(µ) is separable, then it has a standard basis.

Exercise 4 (1 point) Prove that if Ω is finite, then it has a standard basis.

The following basic properties of a standard basis will be useful.

Lemma 5 Let {u0, u1, u2, . . .} be a standard basis, and let f, g ∈ L2(µ), so we can write
f =

∑∞
i=0 aiui and g =

∑∞
i=0 biui. Then:

• Ef = a0

• |f |22 =
∑

i a
2
i

• Cov(f, g) =
∑∞

i=i aibi

• Var(f) =
∑∞

i=1 a
2
i

Exercise 6 (1 point) Prove Lemma 5 when Ω is finite.

(As a hint, we will show how to prove the third point.

Cov(f, g) = 〈f −Ef, g −Eg〉

=

〈 ∞∑
i=1

aiui,

∞∑
i=1

biui

〉
by the first point

=
∞∑
i=1

aibi

as desired.)
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Example 7 (2 point space) In this simple example, we define Ω = {−1, 1}, and for −1 ≤
θ ≤ 1, define the measure on this space µθ by µθ({1}) = (1+θ)/2 and µθ({−1}) = (1−θ)/2.
Thus, writing X(ω) = ω , EX = θ. (We will write, as shorthand for this space, {−1, 1}θ.)

A standard basis for this space {u, v} can be determined as follows. We must take u = 1.
Then, we need EV = 0 and EV 2 = 1. Since on 2-point space any function must be linear,
we can write V (ω) = aω + b. EV = 0, so

aθ + b = 0
⇒ b = −aθ
⇒V (ω) = a(ω − θ).

Then, using the condition EV 2 = 1, we get:

EV 2 = a2E((X − θ)2)
= a2E(X2 − 2θX + θ2)
= a2(1− θ2)
= 1

⇒ a =
1√

1− θ2
.

So, we get a unique standard basis
{

1, X−θ√
1−θ2

}
. In particular, if θ = 0, the basis is just

{1, X}.

Example 8 A more interesting example is for the space Ω = [n], the cyclic group Zn, with
the uniform measure. A character is a function f : Zn → C which satisfies f(x + y) =
f(x)f(y).

Claim: The set of characters is a standard basis.

In showing this, first we note two properties of characters: f(0) = 1, and f(1)n = 1 since
the group is cyclic. Therefore the characters are exactly, for 0 ≤ j ≤ n− 1,

fj(k) = exp
(
i2πjk
n

)
.

This is a standard basis: f0 = 1, |fj |22 = 1, and

〈fj , fk〉 =
1
n

n−1∑
r=0

fj(r)fk(r)

=
1
n

n−1∑
r=0

fj−k(r),
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and this sum is 0 when j 6= k, because

n−1∑
r=0

fl(r) =
n−1∑
r=0

fl(r + 1) by cyclic-ness

= exp
(

2πil
n

) n−1∑
r=0

fl(r)

and so if l 6= 0, the exponent on the right hand side is not 0, so the sum must be 0.

3 Tensor products

For the probability spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), we can consider the product space
(Ω1×Ω2,F1×F2, µ1×µ2), where the measure µ1×µ2 is defined by, for A ∈ F1 and B ∈ F2,
µ1×µ2(A×B) = µ1(A)µ2(B), and we deal with L2(µ1×µ2) = L2(Ω1×Ω2,F1×F2, µ1×µ2).

Definition 9 Let f ∈ L2(µ1) and g ∈ L2(µ2). Define the tensor product of f and g,
f ⊗ g ∈ L2(µ1 × µ2), by

(f ⊗ g)(x, y) = f(x)g(y).

An important property of tensor products is given by the following:

Proposition 10 Let f1, f2 ∈ L2(µ1) and g1, g2 ∈ L2(µ2). Then

〈f1 ⊗ g1, f2 ⊗ g2〉 = 〈f1, f2〉 〈g1, g2〉 .

In particular,
E(f1 ⊗ g1) = Ef1Eg1.

The second part follows directly from the first part by setting f2 = g2 = 1. The first part
comes from Fubini’s theorem:

〈f1 ⊗ g1, f2 ⊗ g2〉 =
∫

(f1 ⊗ g1)(x, y)(f2 ⊗ g2)(x, y)dµ1(x)× µ2(y)

=
∫
f1(x)g1(y)f2(x)g2(y)dµ1 × µ2

Fubini ⇒ =
∫
f1(x)f2(x)dµ1

∫
g1(y)g2(y)dµ2

= 〈f1, f2〉 〈g1, g2〉 .

Dealing with tensor products requires many indices; to clean up the notation, we make the
following convenient definition.
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Definition 11 I is a multi-index if I = (i1, i2, . . . , in) ∈ Nn (here N is taken to be the set
of integers ≥ 0). The weight of I is |I| = |{k : ik = 0}|.

If we have bases for the spaces

U1 = {u1
0, u

1
1, . . . , u

1
n} ⊂ L2(µ1)

U2 = {u2
0, u

2
1, . . . , u

2
n} ⊂ L2(µ2)

...
Um = {um

0 , u
m
1 , . . . , u

m
n } ⊂ L2(µm)

we can define, for a multi-index I, uI = u1
i1
⊗ u2

i2
⊗ · · · ⊗ um

im
. Furthermore, we can define

U1 ⊗ U2 ⊗ · · · ⊗ Um to be all elements of the form uI for any multi-index I. The following
lemma shows that this is a natural object to consider.

Lemma 12 If U i is a standard basis of L2(µi) for all i from 1 to m, then U1⊗U2⊗· · ·⊗Um

is a standard basis of L2 (
∏m

i=1 µi).

Proof: (For finite spaces) For convenience, we write U for U1 ⊗ U2 ⊗ · · · ⊗ Um. First we
see that 1 = 1⊗ 1⊗ · · · ⊗ 1 is in U . Secondly,

〈uI , uJ〉 =
m∏

k=1

〈
uk

ik
, uk

jk

〉
= δI,J by the above proposition,

so the uIs are orthonormal. Finally, checking that the number of these uI equals the
dimension of the whole space completes the argument (in the finite case). 2

Example 13 Write {−1, 1}m
θ = {−1, 1}⊗m

θ . We found above the standard bases for each
of the component spaces. By the above lemma, then, a standard basis for the product space
is given by, for all S ⊂ [m],

US(ω1, ω2, . . . , ωm) =
∏
i∈S

ωi − θ√
1− θ2

.

For example, if θ = 0,
US(ω1, ω2, . . . , ωm) =

∏
i∈S

ωi.

Example 14 A more interesting example of the kinds of spaces that arise as tensor products
are finite Abelian groups. If Ω = G is a finite Abelian group under the uniform measure, we
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can write G = G1 ×G2 × · · · ×Gk, where the Gis are cyclic groups. We showed above that
standard bases for such groups are given by their sets of characters; the above lemma thus
tells us that a standard basis for G is given by the products ψ1(ω1)ψ2(ω2) · · ·ψk(ωk), where
ψi is a character for Gi.

Definition 15 Let (Ωi,Fi, µi) be probability spaces, and let U i be a standard basis for L2(µi)
for all i. For S ⊂ [n], define L2

S(
∏

i µi) to be the space spanned by uI , where the multi-index
I is such that:

• if j ∈ S, ij 6= 0; and

• if j 6∈ S, ij = 0.

This is the space of all functions that are not constant in any of the indices in S. The next
Lemma relates these sets to the spaces of all functions that may vary in any of the indices
of S.

Lemma 16 Let L2
|S(
∏

i µi) ⊂ L2(
∏

i µi) be the space spanned by all functions of the form
f(x1, . . . , xn) = g((xi)i∈S); (Think of the | as representing a restriction to S, as these are
functions that are only allowed to depend on indices in S.) Then

L2
|S

(∏
i

µi

)
= ⊕

T⊂S
L2

T

(∏
i

µi

)

(the ⊕ represents an orthogonal sum).

Proof: (For the finite case) The orthogonality of the spaces is clear by definition. If T ⊂ S,
then clearly L2

T (
∏

i µi) ⊂ L2
|S(
∏

i µi). Finally, counting dimensions completes the proof. 2

Corollary 17 The spaces LS do not depend on the basis.

This will be proven in the next lecture.
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