
STAT 206A: Polynomials of Random Variables

Lecture 4

Lecture date: September 8, 2005 Scribe: Henry Lin

1 The Hermite Polynomial and Fourier Coefficients

Let γ be the 1-dimensional gaussian measure and f : R → R a function in L2(γ) such that
the set of points x ∈ R where f(X) is discontinuous has measure 0. Consider the probability
measure {−1, 1}n

θ on n variables, where each variable equals -1 independently with probabil-
ity (1−θ)/2 and equals +1 independently with probability (1+θ)/2. Let fn : {−1, 1}n → R
be a function such that fn(x1, ..., xn) = f(

∑n
i=1(xi−θ)/

√
n(1− θ2) ), and consider the basis

of all symmetric1 functions Wn
k (x1, ..., xn) = (1−θ2)−k/2

(
n
k

)−1/2(
∑

S⊆[n]:|S|=k

∏
i∈S(xi−θ)).

From the previous lecture, we know that fn(x1, ..., xn) =
∑n

k=0 f̂n(k)Wn
k (x1, ..., xn) and

f(X) =
∑n

k=0 f̂(k)hk(X), where f̂n(k) = 〈fn,Wn
k 〉θ, f̂(k) = 〈f, hk〉γ , and hk is the normal-

ized kth Hermite polynomial. (See previous lecture for full definitions). We now prove the
following theorem:

Theorem 1 ∀ k ∈ N, limn→∞ f̂n(k) = f̂(k).

Proof: For notation it will be useful to define the random variable,
Xn =

∑n
i=1(xi − θ)/

√
n(1− θ2). To prove our theorem, we will prove

limn→∞〈W k
n (x1, ..., xn), fn(x1, ..., xn)〉θ = limn→∞〈hk(Xn), fn(x1, ..., xn)〉θ =

limn→∞〈hk(Xn), f(Xn)〉θ = 〈hk(X), f(X)〉γ .

The second equality follows by definition as fn(x1, ..., xn) = f(Xn). The third
equality follows by the central limit theorem, which implies that for a fixed k,
limn→∞〈hk(Xn), f(Xn)〉θ = 〈hk(X), f(X)〉γ . Therefore, we just need to prove
limn→∞〈W k

n (x1, ..., xn), fn(x1, ..., xn)〉θ = limn→∞〈hk(Xn), fn(x1, ..., xn)〉θ. To complete
the proof, we prove the following statement by induction on k, which implies the state-
ment above.

lim
n→∞

Eθ[|(Wn
0 (x1, ..., xn), ...,Wn

k (x1, ..., xn))− (h0(Xn), ..., hk(Xn))|2] = 0

The base case is trivial, as Wn
0 (x1, ..., xn) = h0(Xn) = 1. The inductive step can be proved

by noting:
1By symmetric, we mean a function fn such that fn(x1, ..., xn) = fn(xσ(1), ..., xσ(n)) for any permutation

σ.
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1. By the central limit theorem, limn→∞〈hi(Xn), hj(Xn)〉θ = δi,j

2. Wn
i (x1, ..., xn) is a symmetric polynomial of degree i. (See Footnote 1 for definition

of symmetric).

3. hi(Xn) and Wn
i (x1, ..., xn) have positive coefficient for all monomials of highest degree.

We leave the formal proof of the inductive step to the reader.

2

Example: To illustrate the use of this theorem, consider the majority function
fn(x1, ..., xn) = Maj(x1, ..., xn) and the uniform measure {−1, 1}n

0 . Note that if we de-
fine f(X) = sgn(X), where

sgn(X) =


−1 if X < 0
0 if X = 0
+1 if X > 0

then fn(x1, ..., xn) = f((
∑n

i=1 xi)/
√

n) and we can apply Theorem 1. Although computing
f̂n(k) is difficult, Theorem 1 implies that if we can compute f̂(k), then it will be a good
estimate of f̂n(k) for large n.

To compute f̂(k) = 〈f, hk〉γ , first note that f is an odd function and hk is an even function
when k is even. Therefore, f̂(k) = 0 for even k, and we only need to compute f̂(k) for odd
k. For odd k:
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f̂(k) = 〈f, hk〉γ = (2/
√

k!)
∫ ∞

0
Hk(x)dγ(x)

= (−2/
√

2πk!)
∫ ∞

0

dk

dxk
(e−x2/2)dx

= (−2/
√

2πk!) · ( dk−1

dxk−1
(e−x2/2)|∞0 )

=
√

2/(πk!) ·Hk−1(0)
=

√
2/(πk!) · (k − 1)!/(2(k−1)/2 · ((k − 1)/2)!)

=
√

2/(πk) ·
√

(k − 1)!/(2k−1 · (((k − 1)/2)!)2)

=
√

2/(πk) ·

√(
k − 1

(k − 1)/2

)
/2k−1

≈
√

2/(πk) ·
√

(2k−1/
√

π(k − 1)/2 )/2k−1

≈
√

2/(πk) ·
√

1/
√

π(k − 1)/2

= Θ(k−3/4)

In the third to last step, we use the approximation
(

m
m/2

)
≈ 2m/

√
πm/2.

With this estimate of f̂(k), it follows that
∑

r:r>k f̂2(r) = θ(k−1/2). Then since∑∞
k=0 f̂2(r) = |f |22 = 1, we can conclude

∑
r:r≤k f̂2(r) = 1 − θ(k−1/2) for large n. This

observation implies that the fourier coefficients of the majority function are largely concen-
trated on the coefficients of low degree polynomials.

2 Influence

2.1 Definition and Examples

Definition 2 Let f ∈ L2(
∏n

i=1 µi). The influence of the ith variable is defined as follows:

Ii(f) = E∏
j:j 6=i µj

[Varµi [f ]]

Example: Let f : {−1, 1}n → {−1, 1} be a function, and let {−1, 1}n
0 be our measure (i.e.

µi = {−1, 1}0 for all i ∈ [n]). For x ∈ {−1, 1}n, we define x⊕i to be the operation that flips
the ith coordinate of x (i.e. x⊕i returns x′ ∈ {−1, 1}n, such that x′i = −xi and x′j = xj for
all j 6= i). It is not difficult to show the following lemma:

4-3



Lemma 3 Ii(f) = P∏
j:j 6=i µj

[f(x) 6= f(x⊕i)].

Proof: Consider all the variables of x ∈ {−1, 1}n as fixed except the ith coordinate. Then

Varµi [f(x)] =
{

1 if f(x) 6= f(x⊕i)
0 if f(x) = f(x⊕i)

When we no longer assume xj is fixed for j 6= i, then Varµi [f(x)] can be thought of as an
indicator random variable Mf that is 1 if f(x) 6= f(x⊕i) and 0 otherwise. Then the proof
is trivial as:

Ii(f) = E∏
j:j 6=i µj

[Varµi [f ]]

= E∏
j:j 6=i µj

[Mf ]

= P∏
j:j 6=i µj

[f(x) 6= f(x⊕i)]

2

Exercise 4 (1 point) Suppose f only attains values a and b, and our measure is {−1, 1}n
θ .

Write Ii(f) in terms of a, b, θ, and Pr[f(x) 6= f(x⊕i)].

Included below are some examples of influence. Unless otherwise stated, assume x1, ..., xn

are drawn from measure
∏n

i=1 µi.

Example: Let f(x1, ..., xn) = g(x1). Then applying the definition of influence, we have:

Ii(f) =
{

Varµ1 [g] if i = 1
0 if i > 1

Example: Let f(x1, ..., xn) = g1(x1) · g2(x2) · ... · gn(xn). Then applying the definition of
influence and simplifying, we have:

Ii(f) = Varµi [gi] ·
∏

j:j 6=i

Eµj [g
2
j ]

Example: Assuming measure {−1, 1}n
0 and f(x1, ..., xn) = Maj(x1, ..., xn), then applying

the definition of influence and using Lemma 3, we have:
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Ii(f) = P∏
j:j 6=i µj

[(
∑
j:j 6=i

xj) = 0]

≈
√

2/(πn) · (1 + o(1))

2.2 Influences and Expansions

Next, we prove a general theorem about influence. Consider a function f ∈ L2(
∏n

i=1 µi),
where f(x1, ..., xn) =

∑
S:S⊆[n] fS(x1, ..., xn) =

∑
J f̂(J)UJ(x1, ..., xn). Although not explic-

itly stated, J is a multi-index of size n, UJ ∈ U1 ⊗ U2 ⊗ ...⊗ Un, and U l is assumed to be
a standard basis of µl for all l ∈ [n]. (See previous lectures for more details).

Theorem 5 Ii(f) =
∑

S⊆[n]:i∈S |fS |22 =
∑

J :Ji 6=0 f̂2(J)

Proof: To prove the theorem, we first show
∑

S⊆[n]:i∈S |fS |22 =
∑

J :Ji 6=0 f̂2(J). Note that

by definition fS =
∑

J :J∈JS
f̂(J) · UJ , where JS is the set of multi-indices J such that

Jk 6= 0 for all k ∈ S and Jk = 0 for all k /∈ S. Then |fS |22 =
∑

J :J∈JS
f̂(J)2, and∑

S⊆[n]:i∈S |fS |22 =
∑

S⊆[n]:i∈S

∑
J :J∈JS

f̂2(J) =
∑

J :Ji 6=0 f̂2(J).

Now we only need to prove Ii(f) =
∑

J :Ji 6=0 f̂2(J). To prove this consider all variables other
than xi as fixed, and let us compute Varµi [f ]:

Varµi [f ] = Varµi [
∑

J :Ji=0

f̂(J)UJ(x1, ..., xn) +
∑

J :Ji 6=0

f̂(J)UJ(x1, ..., xn)]

= Eµi [(
∑

J :Ji 6=0

f̂(J)UJ(x1, ..., xn))2]

=
∑

J,K:Ji 6=0,Ki 6=0

f̂(J)f̂(K) ·Eµi [UJ · UK ]

To get from the first equation to the second, we note that
∑

J :Ji=0 f̂(J)UJ(x1, ..., xn) is
constant when all variables except xi are fixed and Eµi [

∑
J :Ji 6=0 f̂(J)UJ(x1, ..., xn)] = 0

because we started with a standard basis. To get from the second line to the third, note
that the fourier coefficients f̂(J) are constant.

Finally, note that by orthogonality E∏
j∈[n] µj

[UJ · UK ] = 1 if K = J and E∏
j∈[n] µj

[UJ ·
UK ] = 0 otherwise. Now plugging in definitions, the theorem is easy to see:
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Ii(f) = E∏
j:j 6=i µj

[Varµi [f ]] = E∏
j:j 6=i µj

[
∑

J,K:Ji 6=0,Ki 6=0 f̂(J)f̂(K) · Eµi [UJ · UK ]] =∑
J,K:Ji 6=0,Ki 6=0 f̂(J)f̂(K) ·E∏

j∈[n] µj
[UJ · UK ] =

∑
J :Ji 6=0 f̂(J)2. 2
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