STAT 206A: Polynomials of Random Variables

Lecture 12

Lecture date: October 6, 2005

Scribe: Lionel Levine

12

Recall that an operator $T: L^p(\Omega, \mu) \to L^q(\Omega, \mu)$ is (p, q)-hypercontractive $(1 \le p < q)$ if

 $||Tf||_q \le ||f||_p$

for all $f \in L^p(\Omega, \mu)$.

Proposition 1 Let $T_i : L^p(\Omega_i, \mu_i) \to L^q(\Omega_i, \mu_i)$, i = 1, 2. If T_1 and T_2 are (p,q)-hypercontractive, so is $T_1 \otimes T_2$.

The proof uses the following fact, which is known as the generalized Minkowski inequality.

Exercise 2 (1 pt) Given $f : (\Omega_1, \mu_1) \times (\Omega_2, \mu_2) \to \mathcal{R}$ and $x \in \Omega_1$, let $||f||_{x,p} = ||g_x||_p$, where $g_x(y) = f(x, y)$; let $||f||_{y,p}$ be defined analogously for $y \in \Omega_2$. Prove that if $1 \le p \le q$

 $|| ||f||_{x,p} ||_q \le || ||f||_{y,q} ||_p.$

Proof: [Proof of Proposition 1] Let $T = T_1 \otimes T_2$. Then $T = T_1^*T_2^*$, where $T_1^* = T_1 \otimes 1$, $T_2^* = 1 \otimes T_2$. By Fubini's theorem and the generalized Minkowski inequality

$$||Tf||_{q} = || ||T_{1}^{*}(T_{2}^{*}f)||_{x,q} ||_{q}$$

$$\leq || ||T_{2}^{*}f||_{x,p} ||_{q}$$

$$\leq || ||T_{2}^{*}f||_{y,q} ||_{p}$$

$$\leq || ||f||_{y,p} ||_{p}$$

$$= ||f||_{p}.$$

Recall that the Bonami-Beckner operator T_{η} on $L^{2}(\{1, -1\}_{0})$ is given by

$$T_{\eta}(f) = \eta f + (1 - \eta)Ef.$$

Here η is a parameter taking values in [0, 1]. The aim of this lecture is to prove the following theorem of Bonami and Beckner.

Theorem 3 T_{η} is (p,q)-hypercontractive if $\eta^2 \leq \frac{p-1}{q-1}$.

We are really interested in tensor products $T_{\eta} \otimes \ldots \otimes T_{\eta}$ acting on $L^2(\{1, -1\}_0^n)$. According to Proposition 1, the tensor product is (p, q)-hypercontractive whenever T_{η} is.

Exercise 4 (1 pts) Show that the bound on η in the theorem is tight, i.e. the converse holds.

For p > 1 let p' be the unique solution to $\frac{1}{p} + \frac{1}{p'} = 1$. Recall that in Holder's inequality

$$||fg||_1 \le ||f||_p ||g||_{p'}$$

equality is attained when $g = |f|^{p/p'}$. Hence

$$||f||_p = \sup\{||fg||_1 : ||g||_{p'} = 1\}.$$
(1)

Lemma 5 It suffices to prove Theorem 3 under the following assumptions.

(1) $\eta^2 = \frac{p-1}{q-1};$ (2) 1

Proof: If $\eta^2 < \frac{p-1}{q-1}$, choose $p^* < p$ for which $\eta^2 = \frac{p^*-1}{q-1}$. If the theorem holds with η satisfying (1), then by the monotonicity of norms we have

$$||T_{\eta}f||_{q} \le ||f||_{p^{*}} \le ||f||_{p},$$

so it holds in general.

For condition (2), note that by continuity, if the theorem holds for $1 , then it holds for <math>1 \le p < q \le 2$. There are two remaining cases.

Case 1: 2 . Then <math>1 < q' < p' < 2, and since (p-1)(p'-1) = 1 = (q-1)(q'-1)we have $\eta^2 = \frac{p-1}{q-1} = \frac{q'-1}{p'-1}$. Thus we may assume that T_η is (q', p')-hypercontractive. By (1) and the self-adjoint property ("reversibility") of T_η , we have

$$\begin{aligned} ||T_{\eta}f||_{q} &= \sup\{||gT_{\eta}f||_{1} : ||g||_{q'} = 1\} \\ &= \sup\{||fT_{\eta}g||_{1} : ||g||_{q'} = 1\} \\ &\leq ||f||_{p} \sup\{||T_{\eta}g||_{p'} : ||g||_{q'} = 1\} \\ &\leq ||f||_{p} \end{aligned}$$

where in the last step we have used the fact that $||T_{\eta}g||_{p'} \leq ||g||_{q'}$.

Case 2: p < 2 < q. We will use the "semigroup property" of the Bonami-Beckner operators, i.e. the fact that $T_{\eta_1\eta_2} = T_{\eta_1}T_{\eta_2}$. Write $\eta = \eta_1\eta_2$, where $\eta_1^2 = p - 1$, $\eta_2^2 = \frac{1}{q-1}$. By

case 1 we may assume T_{η_1} is (2, q)-hypercontractive, and since p < 2 we may assume T_{η_2} is (p, 2)-hypercontractive, hence

$$||T_{\eta}f||_{q} = ||T_{\eta_{2}}T_{\eta_{1}}f||_{q} \le ||T_{\eta_{1}}f||_{2} \le ||f||_{p}.$$

Proof: [Proof of Theorem 3] Since $||T_{\eta}|g| ||_q \ge ||T_{\eta}g||_q$ our test function g can be taken nonnegative. Moreover if $g \ge 0$ and $g \not\equiv 0$ then $T_{1-\epsilon}g > 0$ for any $\epsilon > 0$. Since $T_{\eta} = T_{\frac{\eta}{1-\epsilon}}T_{1-\epsilon}$, by continuity in η we may assume g > 0. After scaling by a positive constant factor, g has the form g(x) = 1 + ax with |a| < 1. Thus $T_{\eta}g(x) = 1 + a\eta x$ and

$$||T_{\eta}g||_{q}^{q} = \frac{1}{2}(1+a\eta)^{q} + \frac{1}{2}(1-a\eta)^{q}$$
$$= \sum_{n\geq 0} {\binom{q}{2n}} a^{2n}\eta^{2n}.$$

Using the fact that $(1+x)^{p/q} \le 1 + \frac{p}{q}x$ for $x \ge -1$, we obtain

$$||T_{\eta}g||_q^p = 1 + \frac{p}{q} \sum_{n \ge 1} \begin{pmatrix} q \\ 2n \end{pmatrix} a^{2n} \eta^{2n}.$$

Since $||g||_p^p = \sum_{n\geq 0} {p \choose 2n} a^{2n}$ it suffices to show ${p \choose 2n} \geq \frac{p}{q} {q \choose 2n} \eta^{2n}$ for all $n \geq 1$. Indeed, recalling $\eta^2 = \frac{p-1}{q-1}$ we obtain

$$\begin{pmatrix} p \\ 2n \end{pmatrix}^{-1} \frac{p}{q} \begin{pmatrix} q \\ 2n \end{pmatrix} \eta^{2n} = \frac{(q-1)(q-2)\dots(q-2n+1)}{(p-1)(p-2)\dots(p-2n+1)} \left(\frac{p-1}{q-1}\right)^n$$
$$= \left(\frac{p-1}{q-1}\right)^{n-1} \prod_{m=2}^{2n-1} \left(\frac{m-q}{m-p}\right)$$
$$\leq 1$$

where in the last step we have used the assumption $1 . <math>\Box$

This takes care of the space $\{1, -1\}_0$. The following theorem of Oleszkiewicz gives the (2, q)-constant of hypercontractivity for the more general spaces $\{-1, 1\}_{\theta}$.

Theorem 6 If $\mu(-1) = \alpha$, $\mu(1) = \beta$ with $\alpha < \beta$, then T_{η} is (2, q)-hypercontractive if

$$\eta^{2} \le \sigma(2,q) := \frac{\beta^{2/q} - \alpha^{2/q}}{\alpha^{2/q - 1}\beta - \beta^{2/q - 1}\alpha}.$$
(2)

and (p, 2)-hypercontractive if

$$\eta^{2} \leq \sigma(p,2) := \frac{\beta^{2-2/p} - \alpha^{2-2/p}}{\beta \alpha^{1-2/p} - \alpha \beta^{1-2/p}}$$
(3)

Exercise 7 (10 pts + final project) In the setting of the above theorem, find the (p,q) constant of hypercontractivity. (This is an open problem.)

Exercise 8 (1 pt) In the above theorem, show how to get $\sigma(2,q)$ from $\sigma(p,2)$ and vice versa.

Exercise 9 (4 pts) Prove either (3) or (2).

Exercise 10 (8 pts + final project) Find a short (<1 page) proof of either (3) or (2).