Lecture date: October 6, 2005

Recall that an operator $T: L^{p}(\Omega, \mu) \rightarrow L^{q}(\Omega, \mu)$ is (p, q)-hypercontractive $(1 \leq p<q)$ if

$$
\|T f\|_{q} \leq\|f\|_{p}
$$

for all $f \in L^{p}(\Omega, \mu)$.

Proposition 1 Let $T_{i}: L^{p}\left(\Omega_{i}, \mu_{i}\right) \rightarrow L^{q}\left(\Omega_{i}, \mu_{i}\right), i=1,2$. If T_{1} and T_{2} are $(p, q)-$ hypercontractive, so is $T_{1} \otimes T_{2}$.

The proof uses the following fact, which is known as the generalized Minkowski inequality.

Exercise $2\left(1 \mathrm{pt}\right.$) Given $f:\left(\Omega_{1}, \mu_{1}\right) \times\left(\Omega_{2}, \mu_{2}\right) \rightarrow \mathcal{R}$ and $x \in \Omega_{1}$, let $\|f\|_{x, p}=\left\|g_{x}\right\|_{p}$, where $g_{x}(y)=f(x, y)$; let $\|f\|_{y, p}$ be defined analogously for $y \in \Omega_{2}$. Prove that if $1 \leq p \leq q$

$$
\left\|\|f\|_{x, p}\right\|_{q} \leq\| \| f\left\|_{y, q}\right\|_{p}
$$

Proof:[Proof of Proposition 1] Let $T=T_{1} \otimes T_{2}$. Then $T=T_{1}^{*} T_{2}^{*}$, where $T_{1}^{*}=T_{1} \otimes 1$, $T_{2}^{*}=1 \otimes T_{2}$. By Fubini's theorem and the generalized Minkowski inequality

$$
\begin{aligned}
\|T f\|_{q} & =\| \| T_{1}^{*}\left(T_{2}^{*} f\right)\left\|_{x, q}\right\|_{q} \\
& \leq\| \| T_{2}^{*} f\left\|_{x, p}\right\|_{q} \\
& \leq\| \| T_{2}^{*} f\left\|_{y, q}\right\|_{p} \\
& \leq\| \| f\left\|_{y, p}\right\|_{p} \\
& =\|f\|_{p} .
\end{aligned}
$$

Recall that the Bonami-Beckner operator T_{η} on $L^{2}\left(\{1,-1\}_{0}\right)$ is given by

$$
T_{\eta}(f)=\eta f+(1-\eta) E f
$$

Here η is a parameter taking values in $[0,1]$. The aim of this lecture is to prove the following theorem of Bonami and Beckner.

Theorem $3 T_{\eta}$ is (p, q)-hypercontractive if $\eta^{2} \leq \frac{p-1}{q-1}$.

We are really interested in tensor products $T_{\eta} \otimes \ldots \otimes T_{\eta}$ acting on $L^{2}\left(\{1,-1\}_{0}^{n}\right)$. According to Proposition 1, the tensor product is (p, q)-hypercontractive whenever T_{η} is.

Exercise 4 (1 pts) Show that the bound on η in the theorem is tight, i.e. the converse holds.

For $p>1$ let p^{\prime} be the unique solution to $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Recall that in Holder's inequality

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{p^{\prime}}
$$

equality is attained when $g=|f|^{p / p^{\prime}}$. Hence

$$
\begin{equation*}
\|f\|_{p}=\sup \left\{\|f g\|_{1}:\|g\|_{p^{\prime}}=1\right\} \tag{1}
\end{equation*}
$$

Lemma 5 It suffices to prove Theorem 3 under the following assumptions.
(1) $\eta^{2}=\frac{p-1}{q-1}$;
(2) $1<p<q<2$.

Proof: If $\eta^{2}<\frac{p-1}{q-1}$, choose $p^{*}<p$ for which $\eta^{2}=\frac{p^{*}-1}{q-1}$. If the theorem holds with η satisfying (1), then by the monotonicity of norms we have

$$
\left\|T_{\eta} f\right\|_{q} \leq\|f\|_{p^{*}} \leq\|f\|_{p},
$$

so it holds in general.
For condition (2), note that by continuity, if the theorem holds for $1<p<q<2$, then it holds for $1 \leq p<q \leq 2$. There are two remaining cases.

Case 1: $2<p<q$. Then $1<q^{\prime}<p^{\prime}<2$, and since $(p-1)\left(p^{\prime}-1\right)=1=(q-1)\left(q^{\prime}-1\right)$ we have $\eta^{2}=\frac{p-1}{q-1}=\frac{q^{\prime}-1}{p^{\prime}-1}$. Thus we may assume that T_{η} is $\left(q^{\prime}, p^{\prime}\right)$-hypercontractive. By (1) and the self-adjoint property ("reversibility") of T_{η}, we have

$$
\begin{aligned}
\left\|T_{\eta} f\right\|_{q} & =\sup \left\{\left\|g T_{\eta} f\right\|_{1}:\|g\|_{q^{\prime}}=1\right\} \\
& =\sup \left\{\left\|f T_{\eta} g\right\|_{1}:\|g\|_{q^{\prime}}=1\right\} \\
& \leq\|f\|_{p} \sup \left\{\left\|T_{\eta} g\right\|_{p^{\prime}}:\|g\|_{q^{\prime}}=1\right\} \\
& \leq\|f\|_{p}
\end{aligned}
$$

where in the last step we have used the fact that $\left\|T_{\eta} g\right\|_{p^{\prime}} \leq\|g\|_{q^{\prime}}$.
Case 2: $p<2<q$. We will use the "semigroup property" of the Bonami-Beckner operators, i.e. the fact that $T_{\eta_{1} \eta_{2}}=T_{\eta_{1}} T_{\eta_{2}}$. Write $\eta=\eta_{1} \eta_{2}$, where $\eta_{1}^{2}=p-1, \eta_{2}^{2}=\frac{1}{q-1}$. By
case 1 we may assume $T_{\eta_{1}}$ is $(2, q)$-hypercontractive, and since $p<2$ we may assume $T_{\eta_{2}}$ is ($p, 2$)-hypercontractive, hence

$$
\left\|T_{\eta} f\right\|_{q}=\left\|T_{\eta_{2}} T_{\eta_{1}} f\right\|_{q} \leq\left\|T_{\eta_{1}} f\right\|_{2} \leq\|f\|_{p} .
$$

Proof:[Proof of Theorem 3] Since $\left\|T_{\eta}|g|\right\|_{q} \geq\left\|T_{\eta} g\right\|_{q}$ our test function g can be taken nonnegative. Moreover if $g \geq 0$ and $g \not \equiv 0$ then $T_{1-\epsilon} g>0$ for any $\epsilon>0$. Since $T_{\eta}=$ $T_{\frac{\eta}{1-\epsilon}} T_{1-\epsilon}$, by continuity in η we may assume $g>0$. After scaling by a positive constant factor, g has the form $g(x)=1+a x$ with $|a|<1$. Thus $T_{\eta} g(x)=1+a \eta x$ and

$$
\begin{aligned}
\left\|T_{\eta} g\right\|_{q}^{q} & =\frac{1}{2}(1+a \eta)^{q}+\frac{1}{2}(1-a \eta)^{q} \\
& =\sum_{n \geq 0}\binom{q}{2 n} a^{2 n} \eta^{2 n} .
\end{aligned}
$$

Using the fact that $(1+x)^{p / q} \leq 1+\frac{p}{q} x$ for $x \geq-1$, we obtain

$$
\left\|T_{\eta} g\right\|_{q}^{p}=1+\frac{p}{q} \sum_{n \geq 1}\binom{q}{2 n} a^{2 n} \eta^{2 n} .
$$

Since $\|g\|_{p}^{p}=\sum_{n \geq 0}\binom{p}{2 n} a^{2 n}$ it suffices to show $\binom{p}{2 n} \geq \frac{p}{q}\binom{q}{2 n} \eta^{2 n}$ for all $n \geq 1$. Indeed, recalling $\eta^{2}=\frac{p-1}{q-1}$ we obtain

$$
\begin{aligned}
\binom{p}{2 n}^{-1} \frac{p}{q}\binom{q}{2 n} \eta^{2 n} & =\frac{(q-1)(q-2) \ldots(q-2 n+1)}{(p-1)(p-2) \ldots(p-2 n+1)}\left(\frac{p-1}{q-1}\right)^{n} \\
& =\left(\frac{p-1}{q-1}\right)^{n-1} \prod_{m=2}^{2 n-1}\left(\frac{m-q}{m-p}\right) \\
& \leq 1
\end{aligned}
$$

where in the last step we have used the assumption $1<p<q<2$.
This takes care of the space $\{1,-1\}_{0}$. The following theorem of Oleszkiewicz gives the $(2, q)$-constant of hypercontractivity for the more general spaces $\{-1,1\}_{\theta}$.

Theorem 6 If $\mu(-1)=\alpha, \mu(1)=\beta$ with $\alpha<\beta$, then T_{η} is $(2, q)$-hypercontractive if

$$
\begin{equation*}
\eta^{2} \leq \sigma(2, q):=\frac{\beta^{2 / q}-\alpha^{2 / q}}{\alpha^{2 / q-1} \beta-\beta^{2 / q-1} \alpha} . \tag{2}
\end{equation*}
$$

and ($p, 2$)-hypercontractive if

$$
\begin{equation*}
\eta^{2} \leq \sigma(p, 2):=\frac{\beta^{2-2 / p}-\alpha^{2-2 / p}}{\beta \alpha^{1-2 / p}-\alpha \beta^{1-2 / p}} \tag{3}
\end{equation*}
$$

Exercise 7 (10 pts + final project) In the setting of the above theorem, find the (p, q) constant of hypercontractivity. (This is an open problem.)

Exercise 8 (1 pt) In the above theorem, show how to get $\sigma(2, q)$ from $\sigma(p, 2)$ and vice versa.

Exercise 9 (4 pts) Prove either (3) or (2).

Exercise 10 (8 pts + final project) Find a short (<1 page) proof of either (3) or (2).

