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1 Hyper-contraction of noise operators

In this section we begin the analysis of noise-correlation. The main interest here is un-
derstanding the correlation between f(x1, . . . , xn) and f(y1, . . . , yn) where (x1, . . . , xn) are
chosen from a product distribution and (y1, . . . , yn) is obtained from (x1, . . . , xn) be apply-
ing some noise to each coordinate independently. The main difference in our study here
compared to the study of influences will be our interest in re-randonmizing many coordi-
nates simultanously, instead of studying the perturbation caused by a single parameter.
Interestingly, our first application of this theory of noise-correlation will be to the study of
influences.

We begin with a general defintion of tensor product of operators – this corresponds to
applying noise independently to each coordinate. Then we will study a strong propery of
these operators, named hyper-contraction – this will be use frequently later.

1.1 Noise operators

Definition 1 A operator T : L2(µ) → L2(µ) is called positivity improving if Tf ≥ 0 for all
f ≥ 0. We will call T a noise operator if it is positivity improving, ‖Tf‖2 ≤ ‖f‖2 for all f ,
T1 = 1 and 〈Tf, g〉 = 〈f, Tg〉 for all f, g ∈ L2(µ).

Example 2 Let (Ω, µ) be a finite probability space and let M a Markov chain that is re-
versible with respect to µ. M corresponds to a non-negative |M |× |M | matrix that satisfies:∑

y

M(x, y) = 1,

for all x ∈ Ω and
µ(x)M(x, y) = µ(y)M(y, x)

for all x and y. Let TM be defined as follows

(TMf)(x) =
∑

y

M(x, y)f(y).
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Then TM a is noise operator:

‖TMf‖2
2 =

∑
x

µ(x)(TMf)2(x) =
∑
x,y

µ(x)(M(x, y)f(y))2

≤
∑
x,y

µ(x)M(x, y)(f(y))2 =
∑

y

µ(y)f2(y) = ‖f‖2
2,

〈TMf, g〉 =
∑

x

µ(x)TMf(x)g(x) =
∑
x,y

µ(x)M(x, y)f(y)g(x) =
∑
x,y

µ(y)M(y, x)f(y)g(x) = 〈f, TMg〉.

Example 3 Consider the space L2(γn) where γn is the n-dimensional Gaussian measure.
Let 0 ≤ ρ ≤ 1. The Orenstein-Uhelenbeck operator is defined by:

Tρf(x) = Ey∼γn [f(ρx +
√

1− ρ2y)].

In order to check that this is a noise operator note that

Ex∼γn [(Tρf)2(x)] = Ex∼γn

[
E2

y∼γn
[f(ρx +

√
1− ρ2y)|x]

]
≤ Ex∼γn,y∼γn [f2(ρx +

√
1− ρ2y)] = Ex∼γn [f2(x)],

where the last equality follows from the fact that if N1, N2 are two independent standard
Gaussian vectors, then so is ρN1 +

√
1− ρ2N2.

We also have that
〈Tρf, g〉 = E[f(X)f(Y )],

where (X, Y ) is a normal 2n-dimensional vector where Cov[Xi, Xj ] = Cov[Yi, Yj ] = δi,j

and Cov[Xi, Yj ] = ρδi,j. Since this expression is symmetric in X and Y it follows that

〈Tρf, g〉 = 〈f, Tρg〉.

1.2 Tensor products of noise operators

Definition 4 Let Ti : L2(µi) → L2(µi) be a bounded linear operator. Let U i be a basis of
L2(µi). We define T = ⊗n

i=1Ti to be the linear operator satisfying

T (⊗n
i=1ui) = ⊗n

i=1(Tiui),

for every basis element ⊗n
i=1ui.

This definition roughly says that T acts on coordinates i by Ti. One needs to check that
this definition does not depend on the choice of basis.
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Lemma 5 The operator T does not depend on the choice of basis.

Proof: We need to prove that for any two bases ⊗n
i=1U

i and ⊗n
i=1V

i we get the same
operator. Clearly it suffices to show that assuming U i = V i except at a single coordinate
i that we may assume WLOG is 1. In other words, it suffices to show we obtain the same
operator for U1⊗ . . .⊗Un and for V 1⊗U2⊗Un. This follows immediately from the linearity
of T1. 2

Lemma 6 Let Ti : L2(µi) → L2(µi) be a bounded linear operators. Let T ∗i : L2(
∏n

i=1 µi) →
L2(
∏n

i=1 µi) be defined by

(T ∗i f(·, . . . , ·))(x1, . . . , xn) = (Tif(x1, . . . , xi−1, ·, xi+1, . . . , xn))(xi).

Then
∏n

i=1 T ∗i = ⊗n
i=1Ti and the operators T ∗i commute.

Proof: It suffices to check that
∏n

i=1 T ∗i =
∏n

i=1 Ti for basis elements. 2

Lemma 7 If T1, . . . , Tn are noise operators then so is ⊗n
i=1Ti.

Proof: It is easy to see that each of the T ∗i is a noise operator. 2

Lemma 8 Suppose T i is a Markov operator on L2(µi) that is defined by a reversible Markov
chain M i. Then the operator ⊗n

i=1T
i is the operators defined by the Markov chain M where,

M(x, y) =
n∏

i=1

M i(xi, yi).

Proof: It suffices to show that the two operators acts the same on tensors. Let u = ⊗n
i=1ui

be such a tensor then

(TMu)(x) =
∑

y

M(x, y)u(y) =
∑

y

n∏
i=1

M i(xi, yi)ui(yi) =
n∏

i=1

(∑
yi

M i(xi, yi)ui(yi)

)
=

n∏
i=1

TM i(ui),

as needed. 2

Example 9 The most important noise operator we will study is the Bonami-Beckner op-
erator. This operators is specified by a single paramter 0 ≤ ρ ≤ 1. The operator Tρ is
defined on L2(

∏n
i=1 µi) by Tρ = ⊗n

i=1T
i
ρ, where T i

ρ(f) = ρf + (1 − ρ)E[f ]. Note that the
operator T i may be defined via the Markov chain M i where M i(x, y) = ρδx + (1 − ρ)µ(y).
Therefore the operator Tρ corresponds to M(x, y) where yi = xi with probability ρ and is
chosen independently from the measure µ indpenedently for all i.
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Noise operators are contractions by definition. They satisfy ‖Tf‖2 ≤ ‖f‖2 . More impor-
tantly, many of these operators are hyper-contractive.

Definition 10 Let 1 ≤ p ≤ q then we say that the operator T is (p, q)-hypercontractive
satisfies ‖Tf‖q ≤ ‖f‖p for every f with ‖f‖p < ∞.
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