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Lecture 12
Lecture date: October 4, 2005 Scribe: Alex Skorokhod

1 Noise Operators

Definition 1 An operator T : L?(u) — L?(u) is positivity improving if Tf > 0 whenever
f=>0.

Definition 2 An operator T : L?(uu) — L?(u) is called noise operator if the following four
conditions hold:

1. T is positivity improving;
2. T(1) =1 (1 is constant function 1);
3. |Tf’2 < ’f|2;

4. < f,Tg>=<Tf g> (generalization of Markov reversibility).

Example 3 Let (Q, 1) be a finite probability space. Let M be a reversible finite Markov
chain (MC). Represent M by a || x |Q| transition matriz. Define

Taf() =D M(,y)f(y)-
Yy

We claim that Ty is a noise operator. Properties 1 and 2 follow from the fact that M is a
transition probabilities matriz. To show 3 and 4 we’ll need to evoke M’s reversability:

ITf =) @) (Tf()® = > w@)O M,y fy)? <
S @M@,y f@)? = > uWfw)?Y My,x) =|f3 (1)
z,y Yy z

To see condition 4, expand:

<Tufog>=)Y w@)Tf(@)glx) = > ul@)M(z,y)f(y)g(=) =
Y

> )My, 2)f(y)g(x) = < f,Tg> (2)
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Example 4 Let v, be an n-dimensional Gaussian measure. For p € [0,1] define Orenstein-
Uhlenbeck operator T, : L*(y,)) — L?(v,) as

(Tpf)(z) = Eynr, [f(pz + V1 = p?y)]
We claim that operator T), is a noise operator.

Proof: Conditions 1 and 2 follow immediately from definition. Check condition 3:

|Tpf|% =Ezuy, (Tpf(x)Q) = Eiy, (Eyen, f(pz + /1= p2y>2) <
Ez gy, (f(pz + V1 - /021/)2) = Ezvy, (f(x)z) = ’f’% (3)
Reversability condition 4:
<Tpf, 9 >= Eqyr, [f((pz + V1= p*y))g(y)] (4)

Let Z = (px++/1 — p?y), W = y where x and y distributed as above. Then Z,W ~ ~, and
also are correlated: EZ;W; = pd;j. But definition of Z, W is invariant under exchange of
X,Y we have

< Tpf,g >= E[f(Z)g(W)] =</, Tpg >

.0

2 Tensoring
Definition 5 Fori=1,...,n let T; : L*>(;) — L*(u;) be noise operators. Let T = QT :
Lo(TTiy i) — La(TTi2; 1) be a new operator satisfying

T(®ui) = @i(Tiu;)

for all u; € L?(p;).
Proposition 6 Operator T is well-defined.

Proof: To show that the operator is not overly defined, pick two separate basis U'®. . .QU"™,
VI ®...® V" and extend (multi-linearly) operators from values on basis elements. It’s
sufficient to consider only a pair of basis of this form: U'@U?®...U", VIoU?®...0U™.
However for this case equality of operators follows from linearity of 77. O

Definition 7 Given T; (as above), define new operators T : La([ iy i) — La(T17q 1)
as

(Tz*(f(7 SRR )))($1, s ,l’n) = (Tl(f(xla sy Ti—1y 7 Ligly - - 7377?)))('7"1)
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Proposition 8 Q, T; = [[, I and all T;’s commute.

Proof: Apply T to f = ®u;:
T ®...0up) =u1 ® ... ui—1 @ Tit; @ uiy1 ® ... @ uy

Od
Remark 9 If T; = Ty, then @, T; = Tar where M (z,y) = [11y M (i, yi)

Definition 10 For p € [0,1] define Bonami-Beckner operator T, : Lo(I[;_, i) —
Lo(ITizy wi) as T, = @ T; where Ti(fi) = pfi + (1 — p)Ey,[fi]

We can think of T; as T; f (z) = Ef(y) where y is a p-correlated copy of z and all coordinates
are treated independently.

Remark 11 For a finite space (), T; = Ty, where M(x,y) = pdy—e + (1 — p)p
Proposition 12 Bonami-Beckner operator is a noise operator.

Proof: Proof analogous to the same proof for Orenstein-Uhlenbeck operator if we use the
form T'f(z) = Ey:gay=p(f(y)). O

3 Hypercontractivity

Exercise 13 Show that if M is a MC, then |Taflp < |f|p for allp > 1.

Definition 14 Let 1 < p < q. Operator T is (p,q) — hypercontractive if

Tflg < |flp

for all f such that |f|, < oo

Next time we will show that if all T; are (p,q)-hypercontractive then @), T;(p,q) is (p,q)-
hyper-contractive as well.
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