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1 Noise Operators

Definition 1 An operator T : L2(µ) → L2(µ) is positivity improving if Tf ≥ 0 whenever
f ≥ 0.

Definition 2 An operator T : L2(µ) → L2(µ) is called noise operator if the following four
conditions hold:

1. T is positivity improving;

2. T (1) = 1 (1 is constant function 1);

3. |Tf |2 ≤ |f |2;

4. < f, Tg >=< Tf, g > (generalization of Markov reversibility).

Example 3 Let (Ω, µ) be a finite probability space. Let M be a reversible finite Markov
chain (MC). Represent M by a |Ω| × |Ω| transition matrix. Define

TMf(·) =
∑

y

M(·, y)f(y).

We claim that TM is a noise operator. Properties 1 and 2 follow from the fact that M is a
transition probabilities matrix. To show 3 and 4 we’ll need to evoke M’s reversability:

|Tf |22 =
∑

x

µ(x)(Tf(x))2 =
∑

x

µ(x)(
∑

y

M(x, y)f(y))2 ≤∑
x,y

µ(x)M(x, y)f(y)2 =
∑

y

µ(y)f(y)2
∑

x

M(y, x) = |f |22 (1)

To see condition 4, expand:

< TMf, g >=
∑

x

µ(x)Tf(x)g(x) =
∑
x,y

µ(x)M(x, y)f(y)g(x) =∑
x,y

µ(y)M(y, x)f(y)g(x) = < f, Tg > (2)
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Example 4 Let γn be an n-dimensional Gaussian measure. For ρ ∈ [0, 1] define Orenstein-
Uhlenbeck operator Tρ : L2(γn)) → L2(γn) as

(Tρf)(x) = Ey∼γn [f(ρx +
√

1− ρ2y)]

We claim that operator Tρ is a noise operator.

Proof: Conditions 1 and 2 follow immediately from definition. Check condition 3:

|Tρf |22 = Ex∼γn(Tρf(x)2) = Ex∼γn(Ey∼γnf(ρx +
√

1− ρ2y)2) ≤
Ex,y∼γn(f(ρx +

√
1− ρ2y)2) = Ex∼γn(f(x)2) = |f |22 (3)

Reversability condition 4:

< Tρf, g >= Ex,y∼γn [f((ρx +
√

1− ρ2y))g(y)] (4)

Let Z = (ρx+
√

1− ρ2y), W = y where x and y distributed as above. Then Z,W ∼ γn and
also are correlated: EZiWj = ρδij. But definition of Z,W is invariant under exchange of
X, Y we have

< Tρf, g >= E[f(Z)g(W )] =< f, Tρg >

. 2

2 Tensoring

Definition 5 For i = 1, . . . , n let Ti : L2(µi) → L2(µi) be noise operators. Let T =
⊗

Ti :
L2(

∏n
i=1 µi) → L2(

∏n
i=1 µi) be a new operator satisfying

T (⊗iui) = ⊗i(Tiui)

for all ui ∈ L2(µi).

Proposition 6 Operator T is well-defined.

Proof: To show that the operator is not overly defined, pick two separate basis U1⊗. . .⊗Un,
V1 ⊗ . . . ⊗ Vn and extend (multi-linearly) operators from values on basis elements. It’s
sufficient to consider only a pair of basis of this form: U1⊗U2⊗ . . .⊗Un, V1⊗U2⊗ . . .⊗Un.
However for this case equality of operators follows from linearity of T1. 2

Definition 7 Given Ti (as above), define new operators T ∗i : L2(
∏n

i=1 µi) → L2(
∏n

i=1 µi)
as

(T ∗i (f(·, . . . , ·)))(x1, . . . , xn) = (Ti(f(x1, . . . , xi−1, ·, xi+1, . . . , xn)))(xi)
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Proposition 8
⊗

i Ti =
∏

i T
∗
i and all Ti’s commute.

Proof: Apply T ∗i to f = ⊗ui:

T ∗i (u1 ⊗ . . .⊗ un) = u1 ⊗ . . .⊗ ui−1 ⊗ Tiui ⊗ ui+1 ⊗ . . .⊗ un

2

Remark 9 If Ti = TMi, then
⊗

i Ti = TM where M(x, y) =
∏n

i=1 M(xi, yi)

Definition 10 For ρ ∈ [0, 1] define Bonami-Beckner operator Tρ : L2(
∏n

i=1 µi) →
L2(

∏n
i=1 µi) as Tρ =

⊗
Ti where Ti(fi) = ρfi + (1− ρ)Eµi [fi]

We can think of Ti as Tif(x) = Ef(y) where y is a ρ-correlated copy of x and all coordinates
are treated independently.

Remark 11 For a finite space (Ωµ), Ti = TMi, where Mi(x, y) = ρδy=x + (1− ρ)µ

Proposition 12 Bonami-Beckner operator is a noise operator.

Proof: Proof analogous to the same proof for Orenstein-Uhlenbeck operator if we use the
form Tf(x) = Ey:Exy=ρ(f(y)). 2

3 Hypercontractivity

Exercise 13 Show that if M is a MC, then |TMf |p ≤ |f |p for all p ≥ 1.

Definition 14 Let 1 ≤ p ≤ q. Operator T is (p, q)− hypercontractive if

|Tf |q ≤ |f |p

for all f such that |f |p < ∞

Next time we will show that if all Ti are (p,q)-hypercontractive then
⊗

i Ti(p, q) is (p,q)-
hyper-contractive as well.
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