Lecture 12

Lecture date: October 4, 2005

Scribe: Alex Skorokhod

12

1 Noise Operators

Definition 1 An operator $T: L^2(\mu) \to L^2(\mu)$ is positivity improving if $Tf \ge 0$ whenever $f \ge 0$.

Definition 2 An operator $T: L^2(\mu) \to L^2(\mu)$ is called noise operator if the following four conditions hold:

- 1. T is positivity improving;
- 2. T(1) = 1 (1 is constant function 1);
- 3. $|Tf|_2 \leq |f|_2;$
- 4. < f, Tg > = < Tf, g > (generalization of Markov reversibility).

Example 3 Let (Ω, μ) be a finite probability space. Let M be a reversible finite Markov chain (MC). Represent M by a $|\Omega| \times |\Omega|$ transition matrix. Define

$$T_M f(\cdot) = \sum_y M(\cdot, y) f(y).$$

We claim that T_M is a noise operator. Properties 1 and 2 follow from the fact that M is a transition probabilities matrix. To show 3 and 4 we'll need to evoke M's reversability:

$$|Tf|_{2}^{2} = \sum_{x} \mu(x)(Tf(x))^{2} = \sum_{x} \mu(x)(\sum_{y} M(x,y)f(y))^{2} \leq \sum_{x,y} \mu(x)M(x,y)f(y)^{2} = \sum_{y} \mu(y)f(y)^{2}\sum_{x} M(y,x) = |f|_{2}^{2}$$
(1)

To see condition 4, expand:

$$< T_M f, g > = \sum_x \mu(x) T f(x) g(x) = \sum_{x,y} \mu(x) M(x,y) f(y) g(x) =$$

 $\sum_{x,y} \mu(y) M(y,x) f(y) g(x) = < f, Tg >$ (2)

Example 4 Let γ_n be an n-dimensional Gaussian measure. For $\rho \in [0, 1]$ define Orenstein-Uhlenbeck operator $T_{\rho} : L^2(\gamma_n)) \to L^2(\gamma_n)$ as

$$(T_{\rho}f)(x) = \mathbf{E}_{y \sim \gamma_n} [f(\rho x + \sqrt{1 - \rho^2}y)]$$

We claim that operator T_{ρ} is a noise operator.

Proof: Conditions 1 and 2 follow immediately from definition. Check condition 3:

$$|T_{\rho}f|_{2}^{2} = \mathbf{E}_{x \sim \gamma_{n}}(T_{\rho}f(x)^{2}) = \mathbf{E}_{x \sim \gamma_{n}}(\mathbf{E}_{y \sim \gamma_{n}}f(\rho x + \sqrt{1 - \rho^{2}}y)^{2}) \leq \mathbf{E}_{x, y \sim \gamma_{n}}(f(\rho x + \sqrt{1 - \rho^{2}}y)^{2}) = \mathbf{E}_{x \sim \gamma_{n}}(f(x)^{2}) = |f|_{2}^{2}$$
(3)

Reversability condition 4:

$$\langle T_{\rho}f,g\rangle = \mathbf{E}_{x,y\sim\gamma_n}[f((\rho x + \sqrt{1-\rho^2}y))g(y)]$$
(4)

Let $Z = (\rho x + \sqrt{1 - \rho^2}y)$, W = y where x and y distributed as above. Then $Z, W \sim \gamma_n$ and also are correlated: $\mathbf{E}Z_iW_j = \rho\delta_{ij}$. But definition of Z, W is invariant under exchange of X, Y we have

$$\langle T_{\rho}f,g \rangle = \mathbf{E}[f(Z)g(W)] = \langle f,T_{\rho}g \rangle$$

. 🗆

2 Tensoring

Definition 5 For i = 1, ..., n let $T_i : L^2(\mu_i) \to L^2(\mu_i)$ be noise operators. Let $T = \bigotimes T_i : L_2(\prod_{i=1}^n \mu_i) \to L_2(\prod_{i=1}^n \mu_i)$ be a new operator satisfying

$$T(\otimes_i u_i) = \otimes_i (T_i u_i)$$

for all $u_i \in L^2(\mu_i)$.

Proposition 6 Operator T is well-defined.

Proof: To show that the operator is not overly defined, pick two separate basis $\mathcal{U}^1 \otimes \ldots \otimes \mathcal{U}^n$, $\mathcal{V}^1 \otimes \ldots \otimes \mathcal{V}^n$ and extend (multi-linearly) operators from values on basis elements. It's sufficient to consider only a pair of basis of this form: $\mathcal{U}^1 \otimes \mathcal{U}^2 \otimes \ldots \otimes \mathcal{U}^n$, $\mathcal{V}^1 \otimes \mathcal{U}^2 \otimes \ldots \otimes \mathcal{U}^n$. However for this case equality of operators follows from linearity of T_1 . \Box

Definition 7 Given T_i (as above), define new operators $T_i^* : L_2(\prod_{i=1}^n \mu_i) \to L_2(\prod_{i=1}^n \mu_i)$ as

$$(T_i^*(f(\cdot,\ldots,\cdot)))(x_1,\ldots,x_n) = (T_i(f(x_1,\ldots,x_{i-1},\cdot,x_{i+1},\ldots,x_n)))(x_i)$$

Proposition 8 $\bigotimes_i T_i = \prod_i T_i^*$ and all T_i 's commute.

Proof: Apply T_i^* to $f = \otimes u_i$:

$$T_i^*(u_1 \otimes \ldots \otimes u_n) = u_1 \otimes \ldots \otimes u_{i-1} \otimes T_i u_i \otimes u_{i+1} \otimes \ldots \otimes u_n$$

Remark 9 If $T_i = T_{M_i}$, then $\bigotimes_i T_i = T_M$ where $M(x, y) = \prod_{i=1}^n M(x_i, y_i)$

Definition 10 For $\rho \in [0,1]$ define Bonami-Beckner operator T_{ρ} : $L_2(\prod_{i=1}^n \mu_i) \rightarrow L_2(\prod_{i=1}^n \mu_i)$ as $T_{\rho} = \bigotimes T_i$ where $T_i(f_i) = \rho f_i + (1-\rho)\mathbf{E}_{\mu_i}[f_i]$

We can think of T_i as $T_i f(x) = \mathbf{E} f(y)$ where y is a ρ -correlated copy of x and all coordinates are treated independently.

Remark 11 For a finite space $(\Omega \mu)$, $T_i = T_{M_i}$, where $M_i(x, y) = \rho \delta_{y=x} + (1 - \rho)\mu$

Proposition 12 Bonami-Beckner operator is a noise operator.

Proof: Proof analogous to the same proof for Orenstein-Uhlenbeck operator if we use the form $Tf(x) = \mathbf{E}_{y:\mathbf{E}xy=\rho}(f(y))$. \Box

3 Hypercontractivity

Exercise 13 Show that if M is a MC, then $|T_M f|_p \leq |f|_p$ for all $p \geq 1$.

Definition 14 Let $1 \le p \le q$. Operator T is (p,q) - hypercontractive if

$$|Tf|_q \le |f|_p$$

for all f such that $|f|_p < \infty$

Next time we will show that if all T_i are (p,q)-hypercontractive then $\bigotimes_i T_i(p,q)$ is (p,q)-hyper-contractive as well.