1 Noise Operators

Definition 1 An operator $T: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is positivity improving if $T f \geq 0$ whenever $f \geq 0$.

Definition 2 An operator $T: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is called noise operator if the following four conditions hold:

1. T is positivity improving;
2. $T(1)=1$ (1 is constant function 1);
3. $|T f|_{2} \leq|f|_{2}$;
4. $\langle f, T g\rangle=<T f, g\rangle$ (generalization of Markov reversibility).

Example 3 Let (Ω, μ) be a finite probability space. Let M be a reversible finite Markov chain (MC). Represent M by a $|\Omega| \times|\Omega|$ transition matrix. Define

$$
T_{M} f(\cdot)=\sum_{y} M(\cdot, y) f(y) .
$$

We claim that T_{M} is a noise operator. Properties 1 and 2 follow from the fact that M is a transition probabilities matrix. To show 3 and 4 we'll need to evoke M's reversability:

$$
\begin{align*}
|T f|_{2}^{2}=\sum_{x} \mu(x)(T f(x))^{2} & =\sum_{x} \mu(x)\left(\sum_{y} M(x, y) f(y)\right)^{2} \leq \\
\sum_{x, y} \mu(x) M(x, y) f(y)^{2} & =\sum_{y} \mu(y) f(y)^{2} \sum_{x} M(y, x)=|f|_{2}^{2} \tag{1}
\end{align*}
$$

To see condition 4, expand:

$$
\begin{align*}
<T_{M} f, g>=\sum_{x} \mu(x) T f(x) g(x) & =\sum_{x, y} \mu(x) M(x, y) f(y) g(x)= \\
\sum_{x, y} \mu(y) M(y, x) f(y) g(x) & =<f, T g> \tag{2}
\end{align*}
$$

Example 4 Let γ_{n} be an n-dimensional Gaussian measure. For $\rho \in[0,1]$ define OrensteinUhlenbeck operator $\left.T_{\rho}: L^{2}\left(\gamma_{n}\right)\right) \rightarrow L^{2}\left(\gamma_{n}\right)$ as

$$
\left(T_{\rho} f\right)(x)=\mathbf{E}_{y \sim \gamma_{n}}\left[f\left(\rho x+\sqrt{1-\rho^{2}} y\right)\right]
$$

We claim that operator T_{ρ} is a noise operator.
Proof: Conditions 1 and 2 follow immediately from definition. Check condition 3:

$$
\begin{align*}
\left|T_{\rho} f\right|_{2}^{2}=\mathbf{E}_{x \sim \gamma_{n}}\left(T_{\rho} f(x)^{2}\right) & =\mathbf{E}_{x \sim \gamma_{n}}\left(\mathbf{E}_{y \sim \gamma_{n}} f\left(\rho x+\sqrt{1-\rho^{2}} y\right)^{2}\right) \leq \\
\mathbf{E}_{x, y \sim \gamma_{n}}\left(f\left(\rho x+\sqrt{1-\rho^{2}} y\right)^{2}\right) & =\mathbf{E}_{x \sim \gamma_{n}}\left(f(x)^{2}\right)=|f|_{2}^{2} \tag{3}
\end{align*}
$$

Reversability condition 4:

$$
\begin{equation*}
<T_{\rho} f, g>=\mathbf{E}_{x, y \sim \gamma_{n}}\left[f\left(\left(\rho x+\sqrt{1-\rho^{2}} y\right)\right) g(y)\right] \tag{4}
\end{equation*}
$$

Let $Z=\left(\rho x+\sqrt{1-\rho^{2}} y\right)$, $W=y$ where x and y distributed as above. Then $Z, W \sim \gamma_{n}$ and also are correlated: $\mathbf{E} Z_{i} W_{j}=\rho \delta_{i j}$. But definition of Z, W is invariant under exchange of X, Y we have

$$
<T_{\rho} f, g>=\mathbf{E}[f(Z) g(W)]=<f, T_{\rho} g>
$$

2 Tensoring

Definition 5 For $i=1, \ldots, n$ let $T_{i}: L^{2}\left(\mu_{i}\right) \rightarrow L^{2}\left(\mu_{i}\right)$ be noise operators. Let $T=\bigotimes T_{i}$: $L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right) \rightarrow L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right)$ be a new operator satisfying

$$
T\left(\otimes_{i} u_{i}\right)=\otimes_{i}\left(T_{i} u_{i}\right)
$$

for all $u_{i} \in L^{2}\left(\mu_{i}\right)$.

Proposition 6 Operator T is well-defined.

Proof: To show that the operator is not overly defined, pick two separate basis $\mathcal{U}^{1} \otimes \ldots \otimes \mathcal{U}^{n}$, $\mathcal{V}^{1} \otimes \ldots \otimes \mathcal{V}^{n}$ and extend (multi-linearly) operators from values on basis elements. It's sufficient to consider only a pair of basis of this form: $\mathcal{U}^{1} \otimes \mathcal{U}^{2} \otimes \ldots \otimes \mathcal{U}^{n}, \mathcal{V}^{1} \otimes \mathcal{U}^{2} \otimes \ldots \otimes \mathcal{U}^{n}$. However for this case equality of operators follows from linearity of T_{1}.

Definition 7 Given T_{i} (as above), define new operators $T_{i}^{*}: L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right) \rightarrow L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right)$ as

$$
\left(T_{i}^{*}(f(\cdot, \ldots, \cdot))\right)\left(x_{1}, \ldots, x_{n}\right)=\left(T_{i}\left(f\left(x_{1}, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_{n}\right)\right)\right)\left(x_{i}\right)
$$

Proposition $8 \otimes_{i} T_{i}=\prod_{i} T_{i}^{*}$ and all T_{i} 's commute.

Proof: Apply T_{i}^{*} to $f=\otimes u_{i}$:

$$
T_{i}^{*}\left(u_{1} \otimes \ldots \otimes u_{n}\right)=u_{1} \otimes \ldots \otimes u_{i-1} \otimes T_{i} u_{i} \otimes u_{i+1} \otimes \ldots \otimes u_{n}
$$

Remark 9 If $T_{i}=T_{M_{i}}$, then $\bigotimes_{i} T_{i}=T_{M}$ where $M(x, y)=\prod_{i=1}^{n} M\left(x_{i}, y_{i}\right)$

Definition 10 For $\rho \in[0,1]$ define Bonami-Beckner operator $T_{\rho}: L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right) \rightarrow$ $L_{2}\left(\prod_{i=1}^{n} \mu_{i}\right)$ as $T_{\rho}=\bigotimes T_{i}$ where $T_{i}\left(f_{i}\right)=\rho f_{i}+(1-\rho) \mathbf{E}_{\mu_{i}}\left[f_{i}\right]$

We can think of T_{i} as $T_{i} f(x)=\mathbf{E} f(y)$ where y is a ρ-correlated copy of x and all coordinates are treated independently.

Remark 11 For a finite space $(\Omega \mu), T_{i}=T_{M_{i}}$, where $M_{i}(x, y)=\rho \delta_{y=x}+(1-\rho) \mu$

Proposition 12 Bonami-Beckner operator is a noise operator.

Proof: Proof analogous to the same proof for Orenstein-Uhlenbeck operator if we use the form $T f(x)=\mathbf{E}_{y: E x y=\rho}(f(y))$.

3 Hypercontractivity

Exercise 13 Show that if M is a $M C$, then $\left|T_{M} f\right|_{p} \leq|f|_{p}$ for all $p \geq 1$.

Definition 14 Let $1 \leq p \leq q$. Operator T is (p, q)-hypercontractive if

$$
|T f|_{q} \leq|f|_{p}
$$

for all f such that $|f|_{p}<\infty$

Next time we will show that if all T_{i} are (p, q)-hypercontractive then $\bigotimes_{i} T_{i}(p, q)$ is (p, q) -hyper-contractive as well.

