Our main result in this lecture is a proof that a function with low influence sum is "simple"i.e. it depends on a small number of variables. This uses hypercontractivity results from previous lectures.

1 Low-Influence-Sum Functions Depend on Few Coordinates

The following theorem generalizes Friedgut [Fr98].

Theorem 1 Let μ be a probability distribution where the smallest atom has probability α. Let $f \in L^{2}\left(\mu^{n}\right)$ be ± 1-valued with

$$
\begin{equation*}
I(f)=\sum_{i=1}^{n} I_{i}(f)=\sum_{S}|S|\left|f_{S}\right|_{2}^{2} \leq b . \tag{1}
\end{equation*}
$$

Then there exists a function g, ± 1-valued, satisfying

$$
\mathbf{P}[f \neq g] \leq \epsilon,
$$

such that g depends on at most

$$
\mathcal{C}=\frac{b^{2} 2^{12 b / \epsilon}+3}{\epsilon^{3} \alpha^{2 b / \epsilon+2}}
$$

coordinates. Note that \mathcal{C} does not depend on n.
The proof requires the following straightforward lemma.

Lemma 2 Let $1 \leq q \leq 2$ and suppose that

$$
\mathbf{P}[|f| \in\{0\} \cup[\lambda,+\infty)]=1,
$$

where $\lambda>0$, then

$$
|f|_{q}^{q} \leq \lambda^{q-2}|f|_{2}^{2}
$$

Proof: (Lemma) It is easy to check that the inequality holds pointwise. The result follows.

We now proceed with the proof of the theorem.
Proof: (Theorem) Let $\gamma>0$ and

$$
J=\left\{i: I_{i}(f)<\gamma\right\} .
$$

Our goal is to show that, for a well chosen value of γ, the set J is such that if

$$
h=\sum_{S: S \cap J=\emptyset} f_{S}
$$

then

$$
\mathbf{P}[f \neq \operatorname{sgn}(h)] \leq \epsilon
$$

For this, it suffices to show that

$$
|h-f|_{2}^{2} \leq \epsilon .
$$

Let

$$
f_{i}=\sum_{S: i \in S} f_{S}
$$

Note first that $\left|f_{i}\right|_{2}^{2}=I_{i}(f)$. Also, it is easy to see that for all x

$$
f_{i}(x)=f(x)-\mathbf{E}\left[f \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right],
$$

(by expanding both sides over $\left\{f_{S}\right\}_{S \subseteq[n]}$). Therefore, it holds that for all x

$$
\begin{equation*}
\text { either }\left|f_{i}(x)\right| \geq 2 \alpha \text { or } f_{i}(x)=0 \tag{2}
\end{equation*}
$$

Let q, η be such that the space $L^{2}\left(\mu^{n}\right)$ is $(q, 2, \eta)$-hypercontractive (we give actual constants below). Then, by Lemma 2, (2), and the assumptions of the Theorem, we have

$$
\begin{aligned}
\sum_{S}|S \cap J| \eta^{2|S|}\left|f_{S}\right|_{2}^{2} & =\sum_{i \in J}\left|T_{\eta} f_{i}\right|_{2}^{2} \\
& \leq \sum_{i \in J}\left|f_{i}\right|_{q}^{2} \\
& \leq \sum_{i \in J}\left((2 \alpha)^{q-2}\left|f_{i}\right|_{2}^{2}\right)^{2 / q} \\
& =(2 \alpha)^{2-4 / q} \sum_{i \in J}\left(\left|f_{i}\right|_{2}^{2}\right)^{2 / q} \\
& \leq(2 \alpha)^{2-4 / q} \gamma^{2 / q-1} \sum_{i}\left|f_{i}\right|_{2}^{2} \\
& \leq(2 \alpha)^{2-4 / q} \gamma^{2 / q-1} b \\
& \equiv t
\end{aligned}
$$

From this we get that

$$
\begin{equation*}
\sum\left\{\left|f_{S}\right|_{2}^{2}:|S \cap J| \geq \frac{2 t \eta^{-2|S|}}{\epsilon}\right\} \leq \frac{\epsilon}{2} \tag{3}
\end{equation*}
$$

Observe furthermore that it follows from (1) that

$$
\begin{equation*}
\sum\left\{\left|f_{S}\right|_{2}^{2}:|S| \geq \frac{2 b}{\epsilon}\right\} \leq \frac{\epsilon}{2} \tag{4}
\end{equation*}
$$

Combining (4) and (3), we obtain

$$
\sum\left\{\left|f_{S}\right|_{2}^{2}:|S \cap J| \geq H\right\} \leq \epsilon
$$

where

$$
H=\frac{2 t \eta^{-4 b / \epsilon}}{\epsilon}
$$

It remains to show that $H<1$. For this, choose

$$
q=\frac{3}{2}, \quad \eta=\frac{\alpha^{1 / 6}}{2}
$$

and

$$
\gamma<\frac{\epsilon^{3} \alpha^{2 b / \epsilon+2}}{b^{3} 2^{12 b / \epsilon+3}}=\alpha^{O(b / \epsilon)} \epsilon^{3} .
$$

In particular, we have

$$
\left|J^{c}\right| \leq \frac{b}{\gamma}
$$

Tight Example. The tribes functions provide a tight example for Theorem 1. Assume $n=T 2^{T}$ for some $T>0$. A tribe function is a function $f:\{-1,1\}_{0}^{n} \rightarrow\{-1,1\}$ defined as follows: think of the n variables as being 2^{T} "tribes" of T variables; a tribe has value -1 unless all tribe variables are $1 ; f=1$ iff there exists a tribe whose value is 1 . It is easy to see that the probability that f is 1 is roughly $1-1 / e$ (Poisson variable). Also

$$
I_{i}(f) \leq \mathbf{P}[\text { all other tribe variables are } 1] \leq 2^{-T+1}=O\left(\frac{\log n}{n}\right)
$$

Therefore the influence sum is $O(\log n)$. The tightness is left as an exercise.

Exercise 3 (1 pt) Use tribes functions to show that Theorem 1 is tight, i.e. show that for tribes functions, $2^{\Omega(b / \epsilon)}$ coordinates are necessary to get an ϵ-approximation.

2 Dictators Grow Slowly

In this section, we show that among all monotone functions, the dictator functions are the ones that grow the slowest.

Proposition 4 Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a monotone function such that

$$
\frac{\mathbf{E}_{p}[f]}{1-\mathbf{E}_{p}[f]}=c \frac{p}{1-p},
$$

for some $c>0$. Then if $q>p$,

$$
\frac{\mathbf{E}_{q}[f]}{1-\mathbf{E}_{q}[f]} \geq c \frac{q}{1-q} .
$$

This inequality is satisfied with equality for dictator functions.

Proof: By Russo's formula,

$$
\frac{d}{d t} \mathbf{E}^{t}[f]=\frac{\sum_{i} I^{t}(f)}{t(1-t)} \geq \frac{\operatorname{Var}^{t}[f]}{t(1-t)}=\frac{\mathbf{E}^{t}(f)\left(1-\mathbf{E}^{t}(f)\right)}{t(1-t)} .
$$

Solving this differential equation gives immediately

$$
\frac{\mathbf{E}_{t}[f]}{1-\mathbf{E}_{t}[f]} \frac{1-\mathbf{E}_{p}[f]}{\mathbf{E}_{p}[f]} \geq \frac{t}{1-t} \frac{1-p}{p} .
$$

References

[Fr98] E. Friedgut, Boolean Functions With Low Average Sensitivity Depend On Few Coordinates, Combinatorica, 18(1):27-35, 1998.

