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Consider finite probability spaces Ω1, . . . ,Ωn, with measures µ1, . . . , µn. Let αi be size of
the smallest atom of (Ωi, µi), and set α = mini αi. Let f ∈ L2(

∏
i µi) be a real function.

Let ∆if =
∑

S:i∈S f̂(S)US .

Theorem 1 (Generalizaion of Talagrand, 1994) There exists some universal constant
C such that

var(f) ≤ C log(1/α)
∑
i≤n

||∆if ||22
log

(
||∆if ||2/||∆if ||1

) .

Corollary 2 (Kahn, Kalai and Linial, 1988) Consider f : {0, 1}n → {0, 1}, where
{0, 1}n is endowed with the uniform measure, then there exists a constant C > 0 such
that

max
i

Ii(f) ≥ Cvar(f)
log n

n
.

Proof: [of Corollary 2] Recall that ||∆if ||22 = Ii(f), and that x/ log(1/x) is increasing
on (0, 1). By the identity ∆if = f − E[f | Xj , j 6= i], it is easy to check that that
||∆if ||1 = Ii(f). So by Theorem 1 we get

Cvar(f) ≤ n
maxi Ii(f)

log(maxi Ii(f))
,

and since y/ log(1/y) ≥ x implies y ≥ Kx/ log(1/x) for some constant K for all x ∈ (0, 1/2),
we get the result. 2

Remark 3 Similarly we can prove that for all p ∈ (0, 1) there exists a constant Cp such
that if f : {0, 1}n → {0, 1}, where {0, 1}n is endowed with the Bin(n, p) measure, then

max
i

Ii(f) ≥ Cpvar(f)
log n

n
.

Proof: [of Theorem 1] For a real function g from our space, denote

M2(g) =
∑

S:i∈S

ĝ(S)2

|S|
.
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So
var(f) =

∑
S 6=∅

f̂(S)2 =
∑
i≤n

M2(∆if) ,

and hence it suffices to prove that for any function g with Eg = 0,

M2(g) ≤ K log(1/α)
||g||22

log
(
||g||2/||g||1

) . (1)

To prove (1) we use hypercontractivity. The following proposition is proved in the end of
this note.

Proposition 4 Let q ∈ (1, 2) and Θ ∈ (0, 1) satisfies

Θ2 ≤ α2

3
(q − 1) ,

then for all functions g we have,
||TΘg||2 ≤ ||g||q ,

where TΘ is the Bonami-Beckner operator.

Recall that
TΘg =

∑
S

Θ|S|ĝ(S)US ,

and apply the previous with q = 3/2, and Θ2 = α2

6 . This gives that for any integer k > 0,

Θ2k
∑
|S|=k

ĝ(S)2 ≤
∑
S

Θ2|S|ĝ(S)2 = ||TΘg||22 ≤ ||g||23/2 ,

hence ∑
|S|=k

ĝ(S)2 ≤
( 6

α2

)k
||g||23/2 .

Fix an integer m > 0, and sum the previous for all k ≤ m to get

∑
|S|≤m

ĝ(S)2

|S|
≤

∑
k≤m

(
6

α2

)k

k
||g||23/2 ≤

2
(

6
α2

)m

m
||g||23/2 ,

where the last inequality comes from the fact that the ratio between two consecutive sum-
mands in the sum is greater than 2. We now have

M2(g) =
∑
|S|≤m

ĝ(S)2

|S|
+

∑
|S|>m

ĝ(S)2

|S|
≤

2
(

6
α2

)m

m
||g||23/2 +

||g||22
m

≤ 2
m

[( 6
α2

)m
||g||23/2 + ||g||22

]
. (2)
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We now choose optimal m. Choose largest m such that
(

6
α2

)m
||g||23/2 ≤ ||g||

2
2, hence

( 6
α2

)m+1
||g||23/2 ≥ ||g||

2
2 =⇒ m + 1 ≥

2 log
(
||g||2/||g||3/2

)
log(6/α2)

.

Plugging this back into (2) gives

M2(g) ≤ C
log(6/α2)||g||22

log
(
||g||2/||g||3/2

) .

An application of Cauchy-Schwartz gives

||g||33/2 ≤ ||g||1||g||
2
2 ,

hence ( ||g||3/2

||g||2

)3
≤ ||g||1
||g||2

,

which concludes the proof of (1) and so we are done. 2

Let A ⊂ {0, 1}n be a monotone increasing set. Let µp be the Bin(n, p) measure on {0, 1}n.
Note that since A is increasing, µp(A) is an increasing function in p. Moreover, it is a
polynomial and in particular it is infinitely differentiable.

Lemma 5 (Russo’s Lemma)

∂µp(A)
∂p

=

∑
i≤n I

(p)
i (A)

p(1− p)
.

Proof: Let ϕ(p1, p2, . . . , pn) : [0, 1]n → [0, 1] be a function returning the measure of A in
the space L2

( ∏
i µi

)
where µi is a measure on the two point space {0, 1} which gives 1

weight pi and gives 0 weight 1− pi. The clearly µp(A) = ϕ(p, . . . , p), so by the chain rule

∂µp(A)
∂p

=
∑
i≤n

∂ϕ

∂pi
(p, . . . , p) =

∑
i≤n

I
(p)
i (A)

p(1− p)
,

where the last equality is due to the easy fact

∂ϕ

∂pi
(p, . . . , p) =

I
(p)
i (A)

p(1− p)
.

2

A graph property P on n vertices is a set of graphs on n vertices which is invariant un-
der vertex permutations. The following theorem states that any graph property which is
monotone experiences a ’sharp threshold’.
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Theorem 6 (Friedgut and Kalai, 1996) Let P be a monotone increasing graph prop-
erty on n vertices. If p ∈ (0, 1) is such that µp(P ) > ε, then

µq(P ) > 1− ε ,

for q = p + c1
log( 1

2ε
)

log n , where c1 > 0 is a universal constant.

Proof: Invariance under vertex permutation gives that all influences of the indicator func-
tion of A are equal (note the edges of graph are the variables of the function). Hence by
Theorem 1 and Remark 3 we have that∑

i

Ii(A) ≥ Cµp(A)(1− µp(A)) log n .

For any r > p such that µr(A) ≤ 1/2, by Lemma 5 and the previous line we have that

∂µr(A)
∂r

≥ Cµr(A) log n ,

where we consider p to be fixed (and hence so is 1/p). Last equation can be written as

∂ log(µr(A))
∂r

≥ C log n ,

and so if we take q′ = p + log( 1
2ε

)

C log n we get by the fundamental theorem of calculus that

log(µq′(A)) ≥ log(µp(A)) +
∫ q′

p
C log n ≥ log(ε) + log(

1
2ε

) = log(1/2) .

And so µq′(A) ≥ 1/2. Similarly, if we take q = q′ + log( 1
2ε

)

C log n we get that µq(A) ≥ 1− ε.

2

Proof: [of Proposition 4] We have learned that the hypercontractive constant for the space
L2

( ∏
i µi

)
is

Θ(q) =
( (1− α)2−2/q − α2−2/q

(1− α)α1−2/q − α(1− α)1−2/q

)1/2
,

for all q ∈ (1, 2). Thus in order to prove the claim, we just need to lower bound Θ(q). Let

f(x) = x2−2/q, g(x) = −(1− x)x1−2/q ,

and by Lagrange’s theorem we have

Θ(q)2 =
f ′(ξ1)
g′(ξ2)

,
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for some ξ1, ξ2 ∈ (α, 1 − α). By computing, one can check that f ′ and g′ are decreasing,
and hence

Θ(q)2 ≥ f ′(1− α)
g′(α)

=
(2− 2/q)(1− α)1−2/q

α1−2/q + (2/q − 1)α−2/q(1− α)

=
2(q − 1)

q

(1− α

α

)−2/q[ 1− α

α + (2/q − 1)(1− α)

]
≥ (q − 1)α2

3
.

2
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