Consider finite probability spaces $\Omega_{1}, \ldots, \Omega_{n}$, with measures $\mu_{1}, \ldots, \mu_{n}$. Let $\alpha_{i}$ be size of the smallest atom of $\left(\Omega_{i}, \mu_{i}\right)$, and set $\alpha=\min _{i} \alpha_{i}$. Let $f \in L^{2}\left(\prod_{i} \mu_{i}\right)$ be a real function. Let $\Delta_{i} f=\sum_{S: i \in S} \hat{f}(S) U_{S}$.

Theorem 1 (Generalizaion of Talagrand, 1994) There exists some universal constant $C$ such that

$$
\operatorname{var}(f) \leq C \log (1 / \alpha) \sum_{i \leq n} \frac{\left\|\Delta_{i} f\right\|_{2}^{2}}{\log \left(\left\|\Delta_{i} f\right\|_{2} /\left\|\Delta_{i} f\right\|_{1}\right)} .
$$

Corollary 2 (Kahn, Kalai and Linial, 1988) Consider $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where $\{0,1\}^{n}$ is endowed with the uniform measure, then there exists a constant $C>0$ such that

$$
\max _{i} I_{i}(f) \geq \operatorname{Cvar}(f) \frac{\log n}{n}
$$

Proof: [of Corollary 2] Recall that $\left\|\Delta_{i} f\right\|_{2}^{2}=I_{i}(f)$, and that $x / \log (1 / x)$ is increasing on $(0,1)$. By the identity $\Delta_{i} f=f-E\left[f \mid X_{j}, \quad j \neq i\right]$, it is easy to check that that $\left\|\Delta_{i} f\right\|_{1}=I_{i}(f)$. So by Theorem 1 we get

$$
\operatorname{Cvar}(f) \leq n \frac{\max _{i} I_{i}(f)}{\log \left(\max _{i} I_{i}(f)\right)},
$$

and since $y / \log (1 / y) \geq x$ implies $y \geq K x / \log (1 / x)$ for some constant $K$ for all $x \in(0,1 / 2)$, we get the result.

Remark 3 Similarly we can prove that for all $p \in(0,1)$ there exists a constant $C_{p}$ such that if $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where $\{0,1\}^{n}$ is endowed with the $\operatorname{Bin}(n, p)$ measure, then

$$
\max _{i} I_{i}(f) \geq C_{p} \operatorname{var}(f) \frac{\log n}{n} .
$$

Proof: [of Theorem 1] For a real function $g$ from our space, denote

$$
M^{2}(g)=\sum_{S: i \in S} \frac{\hat{g}(S)^{2}}{|S|}
$$

So

$$
\operatorname{var}(f)=\sum_{S \neq \emptyset} \hat{f}(S)^{2}=\sum_{i \leq n} M^{2}\left(\Delta_{i} f\right),
$$

and hence it suffices to prove that for any function $g$ with $\mathbf{E} g=0$,

$$
\begin{equation*}
M^{2}(g) \leq K \log (1 / \alpha) \frac{\|g\|_{2}^{2}}{\log \left(\|g\|_{2} /\|g\|_{1}\right)} \tag{1}
\end{equation*}
$$

To prove (1) we use hypercontractivity. The following proposition is proved in the end of this note.

Proposition 4 Let $q \in(1,2)$ and $\Theta \in(0,1)$ satisfies

$$
\Theta^{2} \leq \frac{\alpha^{2}}{3}(q-1)
$$

then for all functions $g$ we have,

$$
\left\|T_{\Theta} g\right\|_{2} \leq\|g\|_{q}
$$

where $T_{\Theta}$ is the Bonami-Beckner operator.
Recall that

$$
T_{\Theta} g=\sum_{S} \Theta^{|S|} \hat{g}(S) U_{S},
$$

and apply the previous with $q=3 / 2$, and $\Theta^{2}=\frac{\alpha^{2}}{6}$. This gives that for any integer $k>0$,

$$
\Theta^{2 k} \sum_{|S|=k} \hat{g}(S)^{2} \leq \sum_{S} \Theta^{2|S|} \hat{g}(S)^{2}=\left\|T_{\Theta} g\right\|_{2}^{2} \leq\|g\|_{3 / 2}^{2},
$$

hence

$$
\sum_{|S|=k} \hat{g}(S)^{2} \leq\left(\frac{6}{\alpha^{2}}\right)^{k}\|g\|_{3 / 2}^{2}
$$

Fix an integer $m>0$, and sum the previous for all $k \leq m$ to get

$$
\sum_{|S| \leq m} \frac{\hat{g}(S)^{2}}{|S|} \leq \sum_{k \leq m} \frac{\left(\frac{6}{\alpha^{2}}\right)^{k}}{k}\|g\|_{3 / 2}^{2} \leq \frac{2\left(\frac{6}{\alpha^{2}}\right)^{m}}{m}\|g\|_{3 / 2}^{2}
$$

where the last inequality comes from the fact that the ratio between two consecutive summands in the sum is greater than 2 . We now have

$$
\begin{align*}
M^{2}(g) & =\sum_{|S| \leq m} \frac{\hat{g}(S)^{2}}{|S|}+\sum_{|S|>m} \frac{\hat{g}(S)^{2}}{|S|} \leq \frac{2\left(\frac{6}{\alpha^{2}}\right)^{m}}{m}\|g\|_{3 / 2}^{2}+\frac{\|g\|_{2}^{2}}{m} \\
& \leq \frac{2}{m}\left[\left(\frac{6}{\alpha^{2}}\right)^{m}\|g\|_{3 / 2}^{2}+\|g\|_{2}^{2}\right] . \tag{2}
\end{align*}
$$

We now choose optimal $m$. Choose largest $m$ such that $\left(\frac{6}{\alpha^{2}}\right)^{m}\|g\|_{3 / 2}^{2} \leq\|g\|_{2}^{2}$, hence

$$
\left(\frac{6}{\alpha^{2}}\right)^{m+1}\|g\|_{3 / 2}^{2} \geq\|g\|_{2}^{2} \Longrightarrow m+1 \geq \frac{2 \log \left(\|g\|_{2} /\|g\|_{3 / 2}\right)}{\log \left(6 / \alpha^{2}\right)}
$$

Plugging this back into (2) gives

$$
M^{2}(g) \leq C \frac{\log \left(6 / \alpha^{2}\right)\|g\|_{2}^{2}}{\log \left(\|g\|_{2} /\|g\|_{3 / 2}\right)}
$$

An application of Cauchy-Schwartz gives

$$
\|g\|_{3 / 2}^{3} \leq\|g\|_{1}\|g\|_{2}^{2},
$$

hence

$$
\left(\frac{\|g\|_{3 / 2}}{\|g\|_{2}}\right)^{3} \leq \frac{\|g\|_{1}}{\|g\|_{2}}
$$

which concludes the proof of (1) and so we are done.
Let $A \subset\{0,1\}^{n}$ be a monotone increasing set. Let $\mu_{p}$ be the $\operatorname{Bin}(n, p)$ measure on $\{0,1\}^{n}$. Note that since $A$ is increasing, $\mu_{p}(A)$ is an increasing function in $p$. Moreover, it is a polynomial and in particular it is infinitely differentiable.

## Lemma 5 (Russo's Lemma)

$$
\frac{\partial \mu_{p}(A)}{\partial p}=\frac{\sum_{i \leq n} I_{i}^{(p)}(A)}{p(1-p)}
$$

Proof: Let $\varphi\left(p_{1}, p_{2}, \ldots, p_{n}\right):[0,1]^{n} \rightarrow[0,1]$ be a function returning the measure of $A$ in the space $L^{2}\left(\prod_{i} \mu_{i}\right)$ where $\mu_{i}$ is a measure on the two point space $\{0,1\}$ which gives 1 weight $p_{i}$ and gives 0 weight $1-p_{i}$. The clearly $\mu_{p}(A)=\varphi(p, \ldots, p)$, so by the chain rule

$$
\frac{\partial \mu_{p}(A)}{\partial p}=\sum_{i \leq n} \frac{\partial \varphi}{\partial p_{i}}(p, \ldots, p)=\sum_{i \leq n} \frac{I_{i}^{(p)}(A)}{p(1-p)}
$$

where the last equality is due to the easy fact

$$
\frac{\partial \varphi}{\partial p_{i}}(p, \ldots, p)=\frac{I_{i}^{(p)}(A)}{p(1-p)}
$$

A graph property $P$ on $n$ vertices is a set of graphs on $n$ vertices which is invariant under vertex permutations. The following theorem states that any graph property which is monotone experiences a 'sharp threshold'.

Theorem 6 (Friedgut and Kalai, 1996) Let $P$ be a monotone increasing graph property on $n$ vertices. If $p \in(0,1)$ is such that $\mu_{p}(P)>\epsilon$, then

$$
\mu_{q}(P)>1-\epsilon
$$

for $q=p+c_{1} \frac{\log \left(\frac{1}{2 \epsilon}\right)}{\log n}$, where $c_{1}>0$ is a universal constant.

Proof: Invariance under vertex permutation gives that all influences of the indicator function of $A$ are equal (note the edges of graph are the variables of the function). Hence by Theorem 1 and Remark 3 we have that

$$
\sum_{i} I_{i}(A) \geq C \mu_{p}(A)\left(1-\mu_{p}(A)\right) \log n
$$

For any $r>p$ such that $\mu_{r}(A) \leq 1 / 2$, by Lemma 5 and the previous line we have that

$$
\frac{\partial \mu_{r}(A)}{\partial r} \geq C \mu_{r}(A) \log n
$$

where we consider $p$ to be fixed (and hence so is $1 / p$ ). Last equation can be written as

$$
\frac{\partial \log \left(\mu_{r}(A)\right)}{\partial r} \geq C \log n
$$

and so if we take $q^{\prime}=p+\frac{\log \left(\frac{1}{2 \epsilon}\right)}{C \log n}$ we get by the fundamental theorem of calculus that

$$
\log \left(\mu_{q^{\prime}}(A)\right) \geq \log \left(\mu_{p}(A)\right)+\int_{p}^{q^{\prime}} C \log n \geq \log (\epsilon)+\log \left(\frac{1}{2 \epsilon}\right)=\log (1 / 2)
$$

And so $\mu_{q^{\prime}}(A) \geq 1 / 2$. Similarly, if we take $q=q^{\prime}+\frac{\log \left(\frac{1}{2 \epsilon}\right)}{C \log n}$ we get that $\mu_{q}(A) \geq 1-\epsilon$.

Proof: [of Proposition 4] We have learned that the hypercontractive constant for the space $L^{2}\left(\prod_{i} \mu_{i}\right)$ is

$$
\Theta(q)=\left(\frac{(1-\alpha)^{2-2 / q}-\alpha^{2-2 / q}}{(1-\alpha) \alpha^{1-2 / q}-\alpha(1-\alpha)^{1-2 / q}}\right)^{1 / 2}
$$

for all $q \in(1,2)$. Thus in order to prove the claim, we just need to lower bound $\Theta(q)$. Let

$$
f(x)=x^{2-2 / q}, \quad g(x)=-(1-x) x^{1-2 / q}
$$

and by Lagrange's theorem we have

$$
\Theta(q)^{2}=\frac{f^{\prime}\left(\xi_{1}\right)}{g^{\prime}\left(\xi_{2}\right)}
$$

for some $\xi_{1}, \xi_{2} \in(\alpha, 1-\alpha)$. By computing, one can check that $f^{\prime}$ and $g^{\prime}$ are decreasing, and hence

$$
\begin{aligned}
\Theta(q)^{2} & \geq \frac{f^{\prime}(1-\alpha)}{g^{\prime}(\alpha)}=\frac{(2-2 / q)(1-\alpha)^{1-2 / q}}{\alpha^{1-2 / q}+(2 / q-1) \alpha^{-2 / q}(1-\alpha)} \\
& =\frac{2(q-1)}{q}\left(\frac{1-\alpha}{\alpha}\right)^{-2 / q}\left[\frac{1-\alpha}{\alpha+(2 / q-1)(1-\alpha)}\right] \geq \frac{(q-1) \alpha^{2}}{3} .
\end{aligned}
$$

