Lecture 16

Lecture date: Oct 20 Scribe: Yun Long

In this class, we finished the proof of the following theorem.

Theorem 1 Let $q \in(2,3], X_{1}, \ldots, X_{n}$ be independent random variables satisfying $\mathbf{E}\left[X_{i}\right]=$ $0, \mathbf{E}\left[X_{i}^{2}\right]=1$, and $\mathbf{E}\left[\left|X_{i}\right|^{q}\right] \leq \beta$ for some constant $\beta>0$. Let Q be a multi-linear polynomial of degree d that can be expressed as $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i}$. And the Fourier coefficients satisfies $\sum_{S \neq \emptyset} c_{S}^{2}=1$. Let $\Delta: \mathbb{R} \longrightarrow[0,1]$ be a non-decreasing function with $\Delta(0)=0, \Delta(1)=1$ and $\sup _{x}\left|\Delta^{(3)}(x)\right|=A<\infty$. Define $\Delta_{r}(x)=\Delta\left(\frac{x}{r}\right)$. Then

$$
\begin{equation*}
\left|\mathbf{E}\left[\Delta_{r} Q\left(X_{1}, \ldots, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, \ldots, G_{n}\right)\right]\right| \leq O_{q}\left(A r^{-q} \beta^{d / q} \sum_{i}\left(\sum_{S: i \in S} c_{S}^{2}\right)^{q / 2}\right) \tag{1}
\end{equation*}
$$

Where G_{1}, \ldots, G_{n} are independent and with standard normal distributions.

Proof: Split the left hand side of equation (1), we get,

$$
\begin{aligned}
&\left|\mathbf{E}\left[\Delta_{r} Q\left(X_{1}, \ldots, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, \ldots, G_{n}\right)\right]\right| \\
& \leq\left|\mathbf{E}\left[\Delta_{r} Q\left(X_{1}, \ldots, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, X_{2}, \ldots, X_{n}\right)\right]\right| \\
&+\left|\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, X_{2}, \ldots, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, G_{2}, X_{3}, \ldots, X_{n}\right)\right]\right| \\
&+\ldots \\
&+\left|\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, \ldots, G_{n-1}, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, \ldots, G_{n}\right)\right]\right|
\end{aligned}
$$

We will prove the following claim:

$$
\begin{gather*}
\left|\mathbf{E}\left[\Delta_{r} Q\left(Z_{1}, \ldots, Z_{i-1}, X_{i}, Z_{i+1}, \ldots, Z_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(Z_{1}, \ldots, Z_{i-1}, G_{i}, Z_{i+1}, \ldots, Z_{n}\right)\right]\right| \\
\leq O_{q}\left(A r^{-q} \eta^{-d}\left(\sum_{S: i \in S} c_{S}^{2}\right)^{q / 2}\right) \tag{2}
\end{gather*}
$$

Where $Z_{j}=X_{j}$, if $j>i, Z_{j}=G_{j}$, if $j<i$, and $\eta=\frac{\beta^{-1 / q}}{2 \sqrt{q-1}}$.
If this claim is proved, then summing (2) over all i lead to our desired upper bound (1).
Proof of the claim: Since Q is a multi-linear polynomial, we could write it as

$$
Q\left(Z_{1}, \ldots, Z_{i-1}, W, Z_{i+1}, \ldots, Z_{n}\right)=R(Z)+S(Z) \cdot W
$$

Here $Z=\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{n}\right)$. Polynomial R and S satisfies:

$$
\begin{aligned}
R\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{n}\right) & =\sum_{S: i \notin S} c_{S} \prod_{j \in S} Z_{j} \\
S\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{n}\right) & =\sum_{S: i \in S} c_{S} \prod_{j \in S \backslash\{i\}} Z_{j}
\end{aligned}
$$

Starting from the left hand side of (2). By the lemma we proved in last lecture:

$$
\begin{array}{r}
\mathbf{E}\left[\Delta_{r}\left(R(Z)+S(Z) X_{i}\right)\right]-\mathbf{E}\left[\Delta_{r}\left(R(Z)+S(Z) G_{i}\right)\right] \\
\quad \leq O_{q}\left(A r^{-q}\right)\left[\mathbf{E}\left(\left|S(Z) X_{i}\right|^{q}\right)+\mathbf{E}\left(\left|S(Z) G_{i}\right|^{q}\right)\right]
\end{array}
$$

By Lemma 7 of Lecture 13, all X_{j} and G_{j} are $(2, q, \eta)$ hyper-contractive with such defined η. By the claim we proved in last lecture,

$$
O_{q}\left(A r^{-q}\right)\left[\mathbf{E}\left(\left|S(Z) X_{i}\right|^{q}\right)+\mathbf{E}\left(\left|S(Z) G_{i}\right|^{q}\right)\right] \leq O_{q}\left(A r^{-q} \eta^{-d}\right)\left[\left\|S(Z) X_{i}\right\|_{2}^{q}+\left\|S(Z) G_{i}\right\|_{2}^{q}\right]
$$

Because $\left\|S(Z) X_{i}\right\|_{2}^{2}=\left\|S(Z) G_{i}\right\|_{2}^{2}=\sum_{S: i \in S} c_{S}^{2}$, we thus proved

$$
\mathbf{E}\left[\Delta_{r}\left(R(Z)+S(Z) X_{i}\right)\right]-\mathbf{E}\left[\Delta_{r}\left(R(Z)+S(Z) G_{i}\right)\right] \leq O_{q}\left(A r^{-q} \eta^{-d}\right) \sum_{S: i \in S} c_{S}^{2}
$$

which is the claim we wanted.
Remark: If in addition, $I_{i}(Q) \leq \delta$ for all i. Since $\sum_{S: i \in S} c_{S}^{2}=I_{i}(Q)$,

$$
\begin{aligned}
\left|\mathbf{E}\left[\Delta_{r} Q\left(X_{1}, \ldots, X_{n}\right)\right]-\mathbf{E}\left[\Delta_{r} Q\left(G_{1}, \ldots, G_{n}\right)\right]\right| & \leq O_{q}\left(A r^{-q} \eta^{-d}\left(\sum_{i} I_{i}(Q)\right)^{q / 2}\right) \\
& \leq O_{q}\left(A r^{-q} \eta^{-d}\right) \delta^{q / 2-1} \sum_{i} I_{i} \\
& \leq O_{q}\left(A r^{-q} \eta^{-d}\right) \delta^{q / 2-1} d
\end{aligned}
$$

The last inequality uses the fact that $\sum_{S \neq \emptyset} c_{S}^{2}=1$, so,

$$
\sum_{i} I_{i}=\sum_{S} c_{S}^{2}|S| \leq d \sum_{S \neq \emptyset} c_{S}^{2}=d
$$

