1 Hyper-Contraction for Sets of Random Variables

Let $\mathcal{X}=\left\{X_{1}, \ldots, X_{k}\right\}$, where X_{1}, \ldots, X_{k} are random variables with of whose moments are finite. Denote by $\mathcal{P}_{n}(\mathcal{X})$ and $\mathcal{P}(\mathcal{X})$ the following sets

$$
\begin{aligned}
\mathcal{P}_{n}(\mathcal{X}) & =\{\text { all polynomials of degree } \leq n \text { in variables from } \mathcal{X}\} \\
\mathcal{P}(\mathcal{X}) & =\{\text { all polynomials in variables from } \mathcal{X}\}
\end{aligned}
$$

Finally, let $T_{\eta}: \mathcal{P}(x) \rightarrow \mathcal{P}(x)$, where $\eta \in(0,1)$, be the linear operator satisfying the following property

$$
T_{\eta} Y=\eta^{n} Y \text { if } Y \in \mathcal{P}_{n}(\mathcal{X}) \cap \mathcal{P}_{n-1}^{\perp}(\mathcal{X})
$$

Definition 1 Suppose $1 \leq p \leq q<\infty$ and $0<\eta<1$. We say that \mathcal{X} is (p, q, η) hypercontractive if for all polynomials $Q \in \mathcal{P}(\mathcal{X})$ the following is satisfied:

$$
\left\|T_{\eta} Q(\mathcal{X})\right\|_{q} \leq\|Q(\mathcal{X})\|_{p}
$$

Remark 2 The following are easy observations:

- If $\left\{1, X_{1}, \ldots, X_{k}\right\}$ is a standard basis for $L^{2}(\mu)$, for some measure μ, then for every X:

$$
T_{\eta} X=\eta X+(1-\eta) \mathbb{E}[X]
$$

(to see why write $X=(X-\mathbb{E}[X])+\mathbb{E}[X]$ and note that the two summands are orthogonal, the first summand is a degree 1 polynomial in X_{1}, \ldots, X_{k} and the second summand a degree 0 polynomial)

- If $\left\{1, X_{1}^{1}, \ldots, X_{k}^{1}\right\}$ is a standard basis for $L^{2}\left(\mu_{1}\right)$ and $\left\{1, X_{1}^{2}, \ldots, X_{l}^{2}\right\}$ a standard basis for $L^{2}\left(\mu_{2}\right)$, for some measures μ_{1} and μ_{2}, and $\mathcal{X}=\left\{X_{1}^{1}, \ldots, X_{k}^{1}, X_{1}^{2}, \ldots, X_{l}^{2}\right\}$ then:

$$
\mathcal{P}(\mathcal{X})={\underset{i}{*} L^{2}\left(\mu_{i}\right) .}
$$

and T_{η} is the Bonami-Beckner operator

Claim 3 If $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ and $\mathcal{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ are two (p, q, η) hypercontractive sets of random variables that are independent, then so is $\mathcal{X} \cup \mathcal{Y}$.

Proof: Let Q be a polynomial in \mathcal{X} and \mathcal{Y}. We can write Q as follows:

$$
Q(\mathcal{X} \cup \mathcal{Y})=\sum_{i} R_{i}(\mathcal{X}) S_{i}(\mathcal{Y})
$$

and therefore:

$$
\begin{array}{rlr}
\left\|T_{\eta} Q(\mathcal{X} \cup \mathcal{Y})\right\|_{q} & =\| \| T_{\eta} Q(\mathcal{X} \cup \mathcal{Y})\left\|_{L^{q}(\mathcal{Y})}\right\|_{L^{q}(\mathcal{X})} & \text { (Fubini's theorem) } \\
& =\| \| T_{\eta, \mathcal{Y}}\left(\sum_{i} T_{\eta, \mathcal{X}}\left(R_{i}(\mathcal{X}) S_{i}(\mathcal{Y})\right)\right)\left\|_{L^{q}(\mathcal{Y})}\right\|_{L^{q}(\mathcal{X})} & \\
& \leq\| \| \sum_{i} T_{\eta, \mathcal{X}}\left(R_{i}(\mathcal{X}) S_{i}(\mathcal{Y})\right)\left\|_{L^{p}(\mathcal{Y})}\right\|_{L^{q}(\mathcal{X})} & \text { (hypercontractivity of } \mathcal{Y}) \\
& \leq\| \| T_{\eta, \mathcal{X}} \sum_{i} R_{i}(\mathcal{X}) S_{i}(\mathcal{Y})\left\|_{L^{q}(\mathcal{X})}\right\|_{L^{p}(\mathcal{Y})} \quad \text { (generalized Minkowski inequality }(p \leq q) \text {) } \\
& \left.\leq\| \| \sum_{i} R_{i}(\mathcal{X}) S_{i}(\mathcal{Y})\left\|_{L^{p}(\mathcal{X})}\right\|_{L^{p}(\mathcal{Y})} \quad \text { (hypercontractivity of } \mathcal{X}\right) \\
& =\|Q(\mathcal{X} \cup \mathcal{Y})\|_{p}
\end{array}
$$

Claim 4 Let \mathcal{X} be a $(2, q, \eta)$ hypercontractive set of random variables and Q a polynomial of degree $\leq d$ on \mathcal{X}. Then $\|Q(\mathcal{X})\|_{q} \leq \eta^{-d}\|Q(\mathcal{X})\|_{2}$.

Proof: We distinguish the following cases:

- if $Q(\mathcal{X}) \in \mathcal{P}_{d}(\mathcal{X}) \cap \mathcal{P}_{d-1}^{\perp}(\mathcal{X})$, then $T_{\eta} Q(\mathcal{X})=\eta^{d} Q(\mathcal{X})$ and so, by the hypercontractivity of \mathcal{X}, it follows that:

$$
\left\|\eta^{d} Q(\mathcal{X})\right\|_{q}=\left\|T_{\eta} Q(\mathcal{X})\right\|_{q} \leq\|Q(\mathcal{X})\|_{2}
$$

- in general, $Q=\sum_{i=0}^{d} Q_{i}(\mathcal{X})$, where $Q_{i} \in \mathcal{P}_{i}(\mathcal{X}) \cap \mathcal{P}_{i-1}^{\perp}(\mathcal{X})$, and so

$$
\begin{array}{rlr}
\|Q(\mathcal{X})\|_{q} & =\left\|T_{\eta}\left(\sum_{i=0}^{d} \eta^{-i} Q_{i}(\mathcal{X})\right)\right\|_{q} \\
& \leq\left\|\sum_{i=0}^{d} \eta^{-i} Q_{i}(\mathcal{X})\right\|_{2} & \\
& =\left(\sum_{i=0}^{d} \eta^{-2 i}\left\|Q_{i}(\mathcal{X})\right\|_{2}^{2}\right)^{\frac{1}{2}} \quad \text { (because } Q_{i} \perp Q_{j} \\
& \left.\leq\left(\sum_{i=0}^{d} \eta^{-2 d}\left\|Q_{i}(\mathcal{X})\right\|_{2}^{2}\right)^{\frac{1}{2}} \quad \quad \text { (because } \eta<1\right) \\
& =\eta^{-d}\left(\sum_{i=0}^{d}\left\|Q_{i}(\mathcal{X})\right\|_{2}^{2}\right)^{\frac{1}{2}} & \\
& =\eta^{-d}\|Q\|_{2} &
\end{array}
$$

Exercise 5 (Gross '68) (2pts) Prove that the Orenstein-Uhlenbech operator T_{η} is (p, q, η) hypercontractive for all (p, q, η) for which $\{-1,1\}_{0}$ is (p, q, η) hypercontractive. Recall that the Orenstein-Uhlenbech operator $T_{\eta}: L^{2}\left(\gamma_{n}\right) \rightarrow L^{2}\left(\gamma_{n}\right)$ is defined as follows:

$$
\left(T_{\eta} f\right)(x)=\mathbb{E}_{y \sim \gamma_{n}}\left[f\left(\eta x+\sqrt{1-\eta^{2}} y\right)\right]
$$

2 Central Limit Theorem and Generalizations

Exercise 6 (1 pt) Let $\mathcal{N}=\left(\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots, \mathcal{N}_{k}\right)$ be a Gaussian vector and $f(\mathcal{N})$ a degree d polynomial. Show that there exists a sequence $\left\{f_{n}\right\}$, where, for all n, f_{n} is a multilinear polynomial on $\{-1,1\}_{0}^{n d k}$, which converges in distribution to $f(\mathcal{N})$ as $n \rightarrow \infty$.

Theorem 7 (approach due to Linderberg) Let $q \in(2,3], \beta<\infty$, and let X_{1}, \ldots, X_{n} be independent random variables satisfying $\mathbb{E}\left[X_{i}\right]=0, \mathbb{E}\left[X_{i}^{2}\right]=1, \mathbb{E}\left[\left|X_{i}\right|^{q}\right] \leq \beta<\infty$. Also, let

$$
Q\left(X_{1}, \ldots, X_{n}\right)=\sum_{S \subseteq[n]}\left(c_{S} \prod_{i \in S} X_{i}\right)
$$

be a multi-linear polynomial of degree d satisfying $\sum_{S \neq \emptyset} c_{S}^{2}=1$. Then, if $\Delta: \mathbb{R} \rightarrow[0,1]$ is non-decreasing with $\Delta(0)=0, \Delta(1)=1, A=\sup \left|\Delta^{(3)}(x)\right|<\infty, \Delta_{r}(x)=\Delta\left(\frac{x}{r}\right)$, the following holds:

$$
\left|\mathbb{E}\left[\Delta_{r}\left(Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right]-\mathbb{E}\left[\Delta_{r}\left(Q\left(G_{1}, \ldots, G_{n}\right)\right)\right]\right| \leq A \cdot O_{q}\left(r^{-q} \beta^{d} \sum_{i}\left(\sum_{S: i \in S} c_{S}^{2}\right)^{q / 2}\right)
$$

where $G_{1}, G_{2}, \ldots, G_{n}$ are independent Gaussian random variables and the constant hidden in the O notation of the right hand side depends on q.

The reason why the above theorem can be seen as a generalization of the central limit theorem is that, as function $\Delta(\cdot)$ approaches the step function $H(x)=\frac{1}{2}[1+\operatorname{sign}(x-1)]$, the expectation $\mathbb{E}\left[\Delta_{r}\left(Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right]$ approaches the probability $\mathbf{P}\left[Q\left(X_{1}, X_{2}, \ldots, X_{n}\right) \geq\right.$ $r]$ and, similarly, $\mathbb{E}\left[\Delta_{r}\left(Q\left(G_{1}, \ldots, G_{n}\right)\right)\right]$ approaches $\mathbf{P}\left[Q\left(G_{1}, \ldots, G_{n}\right) \geq r\right]$. We will see the proof of the theorem in the next lecture. For now, we state and prove the following lemma.

Lemma 8 Let $q \in(2,3]$ and Y, Z be random variables satisfying:

- $\mathbb{E}[Y]=\mathbb{E}[Z]$
- $\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[Z^{2}\right], \mathbb{E}\left[|Y|^{q}\right], \mathbb{E}\left[|Z|^{q}\right]<\infty$

Then for all x :

$$
\left|\mathbb{E}\left[\Delta_{r}(x+Y)\right]-\mathbb{E}\left[\Delta_{r}(x+Z)\right]\right| \leq A r^{-q}\left(\mathbb{E}\left[|Y|^{q}\right]+\mathbb{E}\left[|Z|^{q}\right]\right)
$$

where $\Delta_{r}(\cdot)$ is the function defined in the statement of theorem 7.

Proof: Since $\Delta^{\prime \prime}\left(0^{-}\right)=0, \Delta^{\prime \prime}\left(1^{+}\right)=0$ and $\Delta^{\prime \prime}(\cdot)$ is continuous it follows that $\Delta^{\prime \prime}(0)=0$ and $\Delta^{\prime \prime}(1)=0$. Hence

$$
\begin{aligned}
\sup _{0 \leq x \leq 1 / 2}\left|\Delta^{\prime \prime}(x)\right| & =\sup _{0 \leq x \leq 1 / 2}\left|\int_{0}^{x} \Delta^{\prime \prime \prime}(t) d t\right| \leq \frac{A}{2} \\
\sup _{1 / 2 \leq x \leq 1}\left|\Delta^{\prime \prime}(x)\right| & =\sup _{1 / 2 \leq x \leq 1}\left|\int_{1}^{x} \Delta^{\prime \prime \prime}(t) d t\right| \leq \frac{A}{2}
\end{aligned}
$$

and so, trivially,

$$
\sup _{x}\left|\Delta^{\prime \prime}(x)\right| \leq \frac{A}{2}
$$

Therefore, for all $x, y \in \mathbb{R}$:

$$
\begin{aligned}
\left|\Delta^{\prime \prime}(x)-\Delta^{\prime \prime}(y)\right| & =A\left|\frac{\Delta^{\prime \prime}(x)}{A}-\frac{\Delta^{\prime \prime}(y)}{A}\right| \\
& \leq A\left|\frac{\Delta^{\prime \prime}(x)}{A}-\frac{\Delta^{\prime \prime}(y)}{A}\right|^{q-2} \\
& =A^{3-q}\left|\Delta^{\prime \prime}(x)-\Delta^{\prime \prime}(y)\right|^{q-2} \\
& =A^{3-q}\left|\int_{y}^{x} \Delta^{\prime \prime \prime}(t) d t\right|^{q-2} \\
& \leq A^{3-q}(A|x-y|)^{q-2} \\
& \leq A|x-y|^{q-2} .
\end{aligned}
$$

This implies the following

$$
\left|\Delta_{r}^{\prime \prime}(x)-\Delta_{r}^{\prime \prime}(y)\right|=\frac{1}{r^{2}}\left|\Delta^{\prime \prime}\left(\frac{x}{r}\right)-\Delta^{\prime \prime}\left(\frac{y}{r}\right)\right| \leq \frac{A}{r^{2}}\left|\frac{x}{r}-\frac{y}{r}\right|^{q-2} \leq A r^{-q}|x-y|^{q-2} .
$$

Now, if we denote by $\varphi(v)=\mathbb{E}\left[\Delta_{r}(x+v Y)\right]-\mathbb{E}\left[\Delta_{r}(x+v Z)\right], 0 \leq v \leq 1$, we have:

- $\varphi(0)=0$
- $\varphi^{\prime}(v)=\mathbb{E}\left[Y \Delta_{r}^{\prime}(x+v Y)\right]-\mathbb{E}\left[Z \Delta_{r}^{\prime}(x+v Z)\right]$
- $\varphi^{\prime}(0)=\mathbb{E}\left[Y \Delta_{r}^{\prime}(x)\right]-\mathbb{E}\left[Z \Delta_{r}^{\prime}(x)\right]=0$
- $\varphi^{\prime \prime}(v)=\mathbb{E}\left[Y^{2} \Delta_{r}^{\prime \prime}(x+v Y)\right]-\mathbb{E}\left[Z^{2} \Delta_{r}^{\prime \prime}(x+v Z)\right]$

Therefore, we can write

$$
\begin{aligned}
\left|\varphi^{\prime \prime}(v)\right| & =\left|\mathbb{E}\left[Y^{2}\left(\Delta_{r}^{\prime \prime}(x+v Y)-\Delta_{r}^{\prime \prime}(x)\right)\right]-\mathbb{E}\left[Z^{2}\left(\Delta_{r}^{\prime \prime}(x+v Z)-\Delta_{r}^{\prime \prime}(x)\right)\right]\right| \\
& \leq \mathbb{E}\left[\left|Y^{2}\left(\Delta_{r}^{\prime \prime}(x+v Y)-\Delta_{r}^{\prime \prime}(x)\right)\right|\right]+\mathbb{E}\left[\left|Z^{2}\left(\Delta_{r}^{\prime \prime}(x+v Z)-\Delta_{r}^{\prime \prime}(x)\right)\right|\right] \\
& \leq A r^{-q}\left(\mathbb{E}\left[Y^{2}|v Y|^{q-2}\right]+\mathbb{E}\left[Z^{2}|v Z|^{q-2}\right]\right)= \\
& \leq A r^{-q} v^{q-2}\left(\mathbb{E}\left[|Y|^{q}\right]+\mathbb{E}\left[|Z|^{q}\right]\right)
\end{aligned}
$$

After integrating twice with respect to v and plugging in $v=1$, we get

$$
|\varphi(1)| \leq A r^{-q}\left(\mathbb{E}\left[|Y|^{q}\right]+\mathbb{E}\left[|Z|^{q}\right]\right) .
$$

