The scribes are based on a guest lecture by Ryan O'Donnell. In this lecture we prove Grothendieck's inequality, which states that for all real $n \times n$ matrices there is a universal constant $K<\infty$ (independent of n) such that

$$
\begin{equation*}
\sup _{\substack{x_{1}, \ldots, x_{n} \in[-1,1] \\ y_{1}, \ldots, y_{n} \in[-1,1]}} \sum_{i, j=1}^{n} A_{i, j} x_{i} y_{j} \geq \frac{1}{K} \sup _{\substack{\vec{x}_{1}, \ldots, \vec{x}_{n} \in B_{d} \\ \vec{y}_{1}, \ldots, \bar{y}_{n} \in B_{d}}} \sum_{i, j=1}^{n} A_{i, j} \vec{x}_{i} \cdot \vec{y}_{j}, \tag{1}
\end{equation*}
$$

where $B_{d}=\left\{z \in \mathbb{R}^{d}:\|z\| \leq 1\right\}$ is the ball of radius 1 in \mathbb{R}^{d}. The optimal constant K for which equation (1) holds is called the Grothendieck constant, K_{G}. We observe that the suprema in (1) are obtained when $x_{i}, y_{j} \in\{-1,1\}$, and $\left\|\vec{x}_{i}\right\|,\left\|\vec{y}_{j}\right\|=1$, so it is equivalent to replace $[-1,1]$ with $\{-1,1\}$ and B_{d} with $S_{d}=\left\{z \in \mathbb{R}^{d}:\|z\|=1\right\}$ in (1). Moreover, by taking the vectors \vec{x}_{i}, \vec{y}_{j} to all lie along a common line in \mathbb{R}^{d}, we see that the reverse inequality to equation (1) holds with $K=1$.

1 Why do we care?

One motivation for studying Grothendieck's inequality is that it provides a method for rapidly approximating the cut norm of a matrix.

Definition 1 The cut norm of a matrix A is defined to be

$$
\begin{equation*}
\|A\|_{c}=\max _{\substack{I \subset[n] \\ J \subset[n]}}\left|\sum_{\substack{i \in I \\ j \in J}} A_{i, j}\right|=\max _{x_{i}, y_{j} \in\{0,1\}}\left|\sum_{i, j=1}^{n} A_{i, j} x_{i} y_{j}\right| . \tag{2}
\end{equation*}
$$

Here $[n]$ denotes $\{1,2, \ldots, n\}$.
Let us denote the left hand side of (1) by $\|A\|_{\infty \rightarrow 1}$. An easy computation verifies that
Exercise $2\|A\|_{c} \leq\|A\|_{\infty \rightarrow 1} \leq 4\|A\|_{c}$.
The right hand side of (1) can be computed in polynomial time using semi-definite programming methods. On the other hand, computing the cut norm of a matrix is NP-hard.

Grothendieck's constant is known not to be too big, so this approach provides a reasonable method for estimating the cut norm.

Grothendieck's inequality also has important consequences in Banach spaces. Indeed, it implies the following:

Corollary 3 Every bounded linear operator T from an L^{1} space X to a Hilbert space is absolutely summable. That is, if $x_{1}, x_{2}, \cdots \in X$ have the property that $\sum_{i} x_{i}$ converges regardless of re-arrangement, then $\sum_{i}\left\|T x_{i}\right\|<\infty$.

2 Known bounds on K_{G}

When Grothendieck originally proved the inequality in 1956, he showed that $1.57 \sim \frac{\pi}{2} \leq$ $K_{G} \leq \sinh \left(\frac{\pi}{2}\right) \sim 2.3$. Riesz ('74) improved the upper bound slightly to 2.26 , and Krivine ('79) showed that

$$
\begin{equation*}
K_{G} \leq \frac{\pi}{2} \frac{1}{\sinh ^{-1}} \sim 1.78 \tag{3}
\end{equation*}
$$

and conjectured that this value is correct. A.M. Davie (' 84 , unpublished) improved the lower bound. Independently, Jim Reeds (c'91, unpublished) improved the lower bound to approximately 1.677 . We shall discuss Reeds' proof below.

3 Proof of lower bound for K_{G}

Observe that

$$
\begin{equation*}
\sup _{\vec{x}_{i}, \vec{y}_{j} \in B_{d}} \sum_{i, j=1}^{n} A_{i, j} \vec{x}_{i} \cdot \vec{y}_{j}=\sup _{\substack{f:[n] \rightarrow B_{d} \\ g:[n] \rightarrow B_{d}}} \sum_{i=1}^{n}\left\langle f(i), \sum_{j=1}^{n} A_{i, j} g(j)\right\rangle . \tag{4}
\end{equation*}
$$

This quantity is clearly increasing in d, we are interested in understanding by how much it can increase as d increases from 1 to ∞. Scaling the matrix A (which has no influence on the Grothendieck's inequality), the above may be expressed as

$$
\begin{equation*}
\sup _{f, g:[n] \rightarrow B_{d}} \int_{[n]}\langle f, A g\rangle d \mu \tag{5}
\end{equation*}
$$

where μ is the uniform measure on $[n]$. For any value of n, this quantity equals

$$
\begin{equation*}
\sup _{f, g: \mathbb{R}^{n} \rightarrow B_{d}} \int_{\mathbb{R}^{n}}\langle f, A g\rangle d \gamma=\sup _{f: \mathbb{R}^{n} \rightarrow B_{d}} \int_{\mathbb{R}^{n}}\|A g(x)\| d \gamma(x) . \tag{6}
\end{equation*}
$$

where γ denotes the n-dimensional Gaussian distribution, and A is now an appropriate linear operator on functions in Gaussian space. Conversely, as $n \rightarrow \infty$, any linear operator on Gaussian space can be approximated arbitrarily well by discrete operators, hence it suffices to consider by how much (6) can increase as d increases from 1 to ∞. In particular, to obtain a good lower bound for K_{G}, we shall exhibit an operator A for which (6) is large as $d \rightarrow \infty$, and small for $d=1$.

To define this operator A, we first recall that any $g: \mathbb{R}^{n} \rightarrow B_{d}$ has a Hermite expansion. That is:

$$
\begin{equation*}
g(x)=\sum_{S \in \mathbb{N}^{n}} \hat{g}(S) H_{S}(x) \tag{7}
\end{equation*}
$$

where $\hat{g}(S) \in B_{d}$ and $H_{S}(x)=\prod_{i=1}^{n} h_{S_{i}}\left(x_{i}\right)$ where h_{j} are the 1-dimensional Hermite polynomials. It is easy to show that the H_{S} 's are orthonormal:

$$
\int_{\mathbb{R}^{n}} H_{S}(x) H_{T}(x)=\left\{\begin{array}{lll}
1 & \text { if } & S=T \tag{8}\\
0 & \text { if } & S \neq T
\end{array}\right.
$$

Moreover, $H_{\overrightarrow{0}}=1$ and if e_{i} denotes the $i^{t h}$ standard basis vector in \mathbb{R}^{n}, then $H_{e_{i}}=x_{i}$. Let us refer to $|S|=\sum S_{i}$ as the "level of S ", and define P_{1} to be the "projection to level 1" operator. That is, $P_{1} g(x)=\sum_{i=1}^{n} \hat{g}\left(e_{i}\right) x_{i}$. Define $A=P_{1}-\lambda \cdot \mathbf{1}$, where $\mathbf{1}$ denotes the identity operator, and we shall choose λ later. Our first claim gives a lower bound for (6) for large d (note we take $n=d$ here for convenience).

Proposition 4

$$
\begin{equation*}
\sup _{g: \mathbb{R}^{n} \rightarrow B_{n}} \int\|A g\| \geq 1-\lambda-O\left(\frac{1}{n}\right) . \tag{9}
\end{equation*}
$$

Proof: To prove this lower bound, it suffices to exhibit a function g for which the claimed lower bound holds. Set $g(x)=\frac{x}{\|x\|}$ and compute

$$
\begin{equation*}
\left(P_{1} g\right)(x)=\sum_{i=1}^{n} x_{i} \hat{g}\left(e_{i}\right) . \tag{10}
\end{equation*}
$$

Now we have that

$$
\begin{align*}
\hat{g}\left(e_{i}\right) & =\int_{y \in \mathbb{R}^{n}} y_{i} g(y) d \gamma(y) \tag{11}\\
& =\int_{y \in \mathbb{R}^{n}} y_{i} \frac{y}{\|y\|} d \gamma(y), \tag{12}
\end{align*}
$$

and a straightforward computation shows that

$$
\int_{\mathbb{R}^{n}} \frac{y_{i} y_{j}}{\|y\|} d \gamma(y)=\left\{\begin{array}{cl}
0 & \text { if } i \neq j \tag{13}\\
a_{n}:=\frac{1}{n} \int_{\mathbb{R}^{n}}^{0}\|x\| d \gamma(x) & \text { if } \quad i=j
\end{array} .\right.
$$

Therefore, $\left(P_{1} g\right)(\vec{x})=a_{n} \vec{x}$ and we compute

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\|A g\| d \gamma(\vec{x}) & =\int_{\mathbb{R}^{n}}\left\|\left(P_{1} g\right)(\vec{x})-\lambda g(x)\right\| d \gamma(\vec{x}) \tag{14}\\
& =\int_{\mathbb{R}^{n}}\left\|a_{n} \vec{x}-\frac{\lambda \vec{x}}{\|\vec{x}\|}\right\| d \gamma(\vec{x}) \tag{15}\\
& =\int_{\mathbb{R}^{n}}\left(a_{n}-\frac{\lambda}{\|x\|}\right)\|\vec{x}\| d \gamma(\vec{x}) \tag{16}\\
& =a_{n} \int_{\mathbb{R}^{n}}\|\vec{x}\|-\lambda \tag{17}\\
& =\frac{1}{n}\left(\int_{\mathbb{R}^{n}}\|\vec{x}\|\right)^{2}-\lambda \tag{18}
\end{align*}
$$

Theorem 5 The quantity

$$
\begin{equation*}
\sup _{g: \mathbb{R}^{n} \rightarrow\{-1,1\}} \int_{\mathbb{R}^{n}}\|A g\| d \gamma(\vec{x}) \tag{19}
\end{equation*}
$$

is maximized by a function g^{\prime} of the following form:

1. $g^{\prime}(x)$ depends only on x_{1}.
2. $g^{\prime}(x)$ is an odd function of x_{1}, and there exists a constant a so that $g(\vec{x})=1$ for $x_{1}>a$ and $g(\vec{x})=-1$ for $0 \leq x_{1} \leq a$.

Remark 6 Granting Theorem 5, one can solve for the optimal constants a and λ and derive a lower bound for K_{G}. The resulting expression is ugly, so we won't repeat the computation here.

Proof: If $g: \mathbb{R}^{n} \rightarrow\{-1,1\}$, then $P_{1} g$ is linear so $\left(P_{1} g\right)(x)=\sum_{i=1}^{n} b_{i} x_{i}$ for some constant b_{i}. Rotating space appropriately, we may assume that $\vec{b}=(b, 0, \ldots, 0)$ for some $0 \leq b \leq 1$. This rotation will not influence the integral $\int_{\mathbb{R}^{n}}\|A g\| d \gamma(\vec{x})$, since γ is rotationally symetric. Define $\alpha: \mathbb{R} \rightarrow[-1,1]$ by $\alpha(z)=\mathbf{E}\left[g \mid P_{1} g=z\right]$, and observe that $-1 \leq \alpha(z) \leq 1$ for all z, and

$$
\begin{gather*}
\mathbf{P}\left[g=1 \mid P_{1} g=z\right]=\frac{1}{2}+\frac{1}{2} \alpha(z) \tag{20}\\
\mathbf{P}\left[g=-1 \mid P_{1} g=z\right]=\frac{1}{2}-\frac{1}{2} \alpha(z) . \tag{21}
\end{gather*}
$$

Define

$$
\begin{equation*}
\sigma=\hat{g}\left(e_{1}\right)=\int_{\mathbb{R}^{n}} x_{1} g(\vec{x}) d \gamma(\vec{x})=\int_{\mathbb{R}} z \alpha(z) \varphi(z) d z \tag{22}
\end{equation*}
$$

where $\varphi(z)$ is the density of a 1-dimensional Gaussian random variable. We compute:

$$
\begin{align*}
\int_{\mathbb{R}^{n}}|A g| d \gamma(\vec{x}) & =\int_{\mathbb{R}^{n}}\left|\left(P_{1} g\right)(\vec{x})-\lambda g(\vec{x})\right| d \gamma(\vec{x}) \tag{23}\\
& =\int_{\mathbb{R}}\left[\left(\frac{1}{2}+\frac{1}{2} \alpha(z)\right)|\sigma z-\lambda|+\left(\frac{1}{2}-\frac{1}{2} \alpha(z)\right)|\sigma z+\lambda|\right] \varphi(z) d z \tag{24}\\
& =\int_{\mathbb{R}} \frac{1}{2}(|\sigma z-\lambda|+|\sigma z+\lambda|) \varphi(z) d z+\int_{\mathbb{R}} \alpha(z) \psi(z) \varphi(z) \tag{25}
\end{align*}
$$

where $\psi(z)=\frac{1}{2}(|\sigma z-\lambda|-|\sigma z+\lambda|)$.
To prove our theorem, we assume that σ is fixed, and consider the following linear program:
$L P_{\sigma}$: Maximize:

$$
\begin{equation*}
\text { Const. }+\int_{-\infty}^{\infty} \psi(z) \varphi(z) \alpha(z) d z \tag{26}
\end{equation*}
$$

subject to the constraints:

$$
\begin{equation*}
-1 \leq \alpha(z) \leq 1 \text { for all } z \geq 0 \quad \text { and } \quad \sigma=\int_{-\infty}^{\infty} z \varphi(z) \alpha(z) d z \tag{27}
\end{equation*}
$$

Since $\varphi(z)$ is even and $\psi(z)$ is odd, we see that there will be an optimizing α which is odd (replace $\alpha(z)$ with $\left(\frac{1}{2}(\alpha(z)-\alpha(-z))\right.$ if necessary). Now, since $\frac{\psi(z)}{z}$ is strictly increasing on $[0, \infty]$ we see that the optimal α will satisfy $\alpha(z)=1$ for $z>a$ and $\alpha(z)=-1$ for $0 \leq z \leq a$. (If $\alpha(z)$ is not of this form, then we can perturb α slightly to increase the value of $\int_{-\infty}^{\infty} \psi(z) \varphi(z) \alpha(z) d z$ while still satisfying the constraints). It now follows from (20) and (21) that g must have the same form.

