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Do taller people make more money?

Question: How can this be measured?

wage at 19

height at 16

National Longitudinal Survey of Youth 1997 (NLSY97)

-

Ave (wage)

Ave (height)



Definition of Covariance

Cov (X,Y)= E[(X-µX)(Y – µY)]

Alternative Formula
Cov (X,Y)= E(XY) – E(X)E(Y)

Variance of a Sum
Var (X+Y)= Var (X) + Var (Y)+2 Cov (X,Y)

Claim: Covariance is Bilinear
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What does the sign of covariance mean?

Look at Y = aX + b. 

Then: Cov(X,Y) = Cov(X,aX + b) = aVar(X).

If a > 0, above the average in X goes with above the ave in Y.

If a < 0, above the  average n X goes with below the ave in Y. 

Cov(X,Y) = 0 means that there is no linear trend which connects 
X and Y. 
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Meaning of the value of Covariance

Back to the National Survey of Youth study : 

the actual covariance was 3028 where height is  
inches and the wages in dollars. 

Question: Suppose we measured all the heights in 
centimeters, instead. There are 2.54 cm/inch?

Question: What will happen to the covariance?

Solution: So let HI be height in inches and HC be the 
height in centimeters, with W – the wages. 

Cov(HC,W) = Cov(2.54 HI,W) = 2.54 Cov (HI,W).

So the value depends on the units and is 
not very informative!



Covariance and Correlation

Define the correlation coefficient:
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Using the linearity of Expectation we get:

Notice that ρ(aX+b, cY+d) = ρ(X,Y). This 
new quantity is independent of the change in
scale and it’s value is quite informative.



Covariance and Correlation

Properties of correlation:
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Covariance and Correlation

Claim: The correlation is always between –1 and +1
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ρ = 1 iff Y = aX + b.



Correlation and Independence
X & Y are uncorrelated iff any of the following hold

Cov(X,Y) = 0,   

Corr(X,Y) = 0

E(XY) = E(X) E(Y).

In particular, if X and Y are independent they are 
uncorrelated. 

Example: Let X∼ N(0,1) and Y = X2, then 
Cov(XY) =E(XY) – E(X)E(Y) = E(X3) = 0,
since the density is symmetric.

X

X2



Roll a die N times.  Let X be #1’s, Y be #2’s.

Question: What is the correlation between X and Y?

Solution: 

To compute the correlation directly from the multinomial 
distribution would be difficult.   Let’s use a trick:

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y).

Since X+Y is just the number of 1’s or 2’s, X+Y∼Binom(p1+p2,N).

Var(X+Y) = (p1+p2)(1 - p1+p2) N. 

And X∼Binom(p1,N), Y∼Binom(p2,N), so 

Var(X) =p1(1-p1)N;  Var(Y) = p2(1-p2)N. 



Correlations in the Multinomial 
Distribution

Hence

Cov(X,Y) = (Var(X+Y) – Var(X) – Var(Y))/2

Cov(X,Y) = N((p1+p2)(1 - p1-p2) - p1(1-p1) -p2(1-p2))/2 = -N p1 p2

In our case p1 = p2 = 1/6, so ρ = 1/5. The formula holds for 

a general multinomial distribution.
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Variance of the Sum of N Variables

Var(∑i Xi) = ∑i Var(Xi) + 2 ∑j<i Cov(XiXj) 

Proof: 
Var(∑i Xi) = E[∑i Xi – E(∑j Xi) ]2

[∑i Xi – E(∑j Xi) ]2 = [∑i (Xi –µi) ]2 

=  ∑i (Xi –µi) 2 + 2 ∑j<i (Xi –µi) (Xj –µj).
Now take expectations and we have the result. 



Variance of the Sample Average

Let the population be a list of N numbers x(1), …, x(N).   
Then 

are the population mean and population variance.  

Let X1, X2,…, Xn be a sample of size n drawn from this 
population. Then each Xk has the same distribution as 
the entire population and 
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Variance of the Sample Average

When X1, X2,…, Xn are drawn with replacement, they 
are independent and each Xk has variance σ2 .  Then
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By linearity of expectation ,   both
for a sample drawn with and without replacement.
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Variance of the Sample Average

In particular, 0 =Var(SN) N σ2 + N(n-N) Cov(X1,X2
)

Therefore:   Cov(X1 X2) = -σ2/(N-1).
And hence Var(Sn) = σ2 n(1- (n-1)/(N-1)).

n nX  = S n/

Question: What is the SD for sampling without 
replacement?

Solution: Let Sn = X1 + X2 + … + Xn.    Then .

Var(Sn) = ∑i Var(Xi) + 2 ∑j<i Cov(XiXj) 
By symmetry: Cov(Xi,Xj) = Cov(X1,X2), so

Var(Sn) = nσ2 + n(n-1) Cov(X1 X2) .
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