

Introduction to probability

Stat 134

FAII 2005 Berkeley

Lectures prepared by: Elchanan Mossel Yelena Shvets

Follows Jim Pitman's book: Probability Section 4.5

Cumulative Distribution Function

•<u>Definition</u>: For a random variable X, the function $F(x) = P(X \le x)$,

is called the <u>cumulative distribution function</u> (cdf).
• A <u>distribution</u> is called <u>continuous</u> when the cdf is continuous.

Properties of the CDF.

<u>Claim</u>: The cdf determines the probability of lying inside intervals: $P(a < X \le b) = F(b) - F(a)$.

- $P\{(a, b]\} = F(b) F(a)$.
- $P\{(a, b)\} = \lim_{x \to b^-} F(x) F(a).$
- $P\{(a,b) \cap (c,d)\} = P\{(c,b)\}, for a < c < b < d.$
- $P\{(a,b) \cup (c,d)\} = P\{(a,d)\}, \text{ for } a < c < b < d.$
- $P{b} = P{(a,b]} P{(a,b)} = F(b) \lim_{x \to b^{-}} F(x).$

If F is continuous, P(a,b) = F(b) - F(a) and F(x) = 0 for all x.

Discrete Distributions

<u>Claim</u>: If X is a discrete variable, then $F(x) = \sum_{y \le x} P(X=y).$

• Example: Let X be the numbers on a fair die.

Discrete Distributions

• Example: Let X be the number of rolls before the first six appears when rolling a fair die.

X~ Geom(1/6), P(n)=(5/6)ⁿ⁻¹ 1/6 (for integer n) F(x) = 1 - (5/6) $\lfloor x \rfloor$

Continuous Distributions with a Density

• <u>Claim</u>: If X is a continuous variable with a density $f_X(x)$ then $F(x) = \int_{-\infty}^{x} f_X(y) dy$.

•<u>Claim</u>: if X has a continuous distribution given by a c.d.f F(x) and

- •F is differentiable in all but finitely many points,
- •Then the distribution has a density $f_X(x) = F'(x)$.

<u>"Pf":</u> We have $F(x) = \int_{-\infty}^{x} f_{X}(t) dt$ • So: $F'(x) = f_{X}(x)$ at the points where F is differentiable.

Distributions with a Density •Example: $U \sim \text{Uniform}(0,1)$. $f_X(x) = \begin{cases} 1, \text{ if } 0 \le x \le 1\\ 0, \text{ otherwise.} \end{cases} \quad F(x) = \begin{cases} x, \text{ if } 0 \le x \le 1\\ 0, \text{ if } x < 0\\ 1, \text{ if } x > 1. \end{cases} \quad f_X$ 2 0 1 2 -1 F(x)Question: Show that X = $2|U - \frac{1}{2}|$ is a Uniform variable as well. 0 0 -1 Solution: $P(X \le x) = P(2|U - \frac{1}{2}| \le x) = P(\frac{1}{2} - x/2 \le U \le \frac{1}{2} + x/2)$ =F(1/2 + x/2) - F(1/2 - x/2) = 1/2 + x/2 - 1/2 + x/2=x = F(x).

So X has the same cdf as U therefore the same distribution. Question: What is the distribution of 4 | U-1/2 | - 1/4 | ?

Distribution of Min and Max.

Let $X_1, X_2, ..., X_n$ be independent random variables. $X_{max} = max\{X_1, X_2, ..., X_n\}$ & $X_{min} = min\{X_1, X_2, ..., X_n\}$.

It's easy to find the distribution of X_{max} and X_{min} by using the cdf's by using the following observations: For any x

- $X_{max} \le x$ iff $X_i \le x$ for all i.
- X_{min} > x iff X_i > x for all i.

Distribution of Min and Max.

= $P(X_1 \le x)P(X_2 \le x) ... P(X_n \le x)$, by indep. • $F_{min}(x) = 1 - (1 - F_1(x))(1 - F_2(x)) ... (1 - F_n(x)).$ $F_{min}(x) = P(X_{min} \le x) + F_1(x)F_1(x) + F_1(x) + F_1(x).$ ·Example: Supposeritial distributions with rates λ_{i} = 1 - (1 - F₁(X)) (1 - F₂(X)) ... (1 - F_n(X)). Question: Find the distribution of X_{min}. Solution: For x <0, $F_i(x)$ =0 and for x \geq 0, F_i = 1- $e^{-\lambda x}$. So for x < 0, F_{min} = 0 and for x \geq 0, F_{min} = 1- $e^{-\lambda_1 + \lambda_2 + \dots + \lambda_n}$.

 $X_{min} \sim Exp(\lambda_1 + \lambda_2 + ... \lambda_n)$

Order Statistics

Let $X_1, X_2, ..., X_n$ be random variables, We can use the CDF to find the CDF of the kth largest of these X. We call this $X_{(k)}$, or the kth order statistic.

The density for the min and max are special cases for k = 1 and k = n.

If all the X_i are identical and independent, we can find the density of the order statistics

Order Statistics

P(X_(k) ~ (x, x+dx)) = P(one of the X's in dx)* P(k-1 of the X's below x)* P(n-k of the X's above x)=

$$\nearrow nf(x) * \left(egin{array}{c} n-1 \\ k-1 \end{array}
ight) (F(x))^{k-1} \left(1-F(x)
ight)^{n-k}$$

P(one of the X's in dx)

P(n-k of the X's above x)(P(X > x) = 1-F(x))

Number of ways to order X's P(k-1 of the X's below x)(P(X < x) = F(x))

Order Statistics - for Uniform R.V When X_i are Unif(0,1) we obtain:

$$f_{(k)}(x) = n * \binom{n-1}{k-1} x^{k-1} (1-x)^{n-k}$$

<u>Def:</u> For r,s > 0 the beta(r,s) distribution is the distribution on (0,1) with density $x^{r-1}(1-x)^{s-1}/B(r,s)$ where $B(r,s) = \int_0^1 x^{r-1}(1-x)^{s-1} dx$

<u>Claim</u>: If $(X_i)_{i=1}^n$ are i.i.d Unif(0,1) then $X_{(k)}$ has beta(k,n-k+1) distribution.

Beta and Gamma distributions Claim: If r=k and s=n-k+1 are integers then: $B(r,s) = \frac{1}{n\binom{n-1}{k-1}} = \frac{(k-1)!(n-k)!}{n!} = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$

where $\Gamma(r) = (r-1)!$ For integer r's.

<u>Problem</u>: Calculate E(X) and Var(X) for X with beta(r,s) distribution for integer r and s.

<u>Problem</u>: For the order statistics of n i.i.d. unif(0,1) random variables, calculate E(X) and Var(X).

Percentiles and Inverse CDF.

Definition: The p'th quantile of the distribution of a random variable X is given by the number x such that

A pseudo random number generator generates a sequence $U_1, U_2, ..., U_n$ each between 0 and 1, which are i.i.d. Uniform(0,1) random variables.

Question: You are working for a company that is developing an on-line casino. How can you use this sequence to simulate n rolls of a fair die?

Solution: You need a new sequence of variables each with a discrete uniform distribution on 1,2,3,4,5,6.

Simple idea -- break up the unit interval into 6 intervals $A_k = ((k-1)/6, k/6]$, each of length 1/6 & let g(u) = k if $u \in A_k$

Then $X_i = g(U_i)$ each has the desired distribution: $P(X_i = k) = P(g(U_i)=k) = P(A_k) = 1/6.$

Note that for i=1,2,3,4,5,6 it holds that: g(F(i)) = g(i/6)=i.

For a general discrete random variable with $P(k) = p_k$, k=1,2,3...we can use the same idea, except each interval A_k is now of length p_k :

$$A_{k} = (p_{1}+p_{2}+...+p_{k-1}, p_{1}+p_{2}+...+p_{k-1}+p_{k}].$$

The function g(u) defined in this way is a kind of an inverse of the cdf:

g(F(k)) = k for all k=1,2,3,

This observation can be used to simulate continuous random variables as well.

Define $F^{-1}(x) = \min_{y} F(y) = x$.

Inverse cdf Applied to Standard Uniform

Define $F^{-1}(x) = \min \{ y : F(y) = x \}$

Theorem: For any cumulative distribution function F, with inverse function F^{-1} , if U has a Uniform (0,1) distribution, then a random variable $G = F^{-1}(U)$ has F as a cdf.

Proof (imagine first that F is strictly increasing):

 $P(G \le x) = P\{U \le F(x)\} = F(x).$

A pseudo random number generator gives a sequence $U_1, U_2, ..., U_n$ each between 0 and 1, which behave like a sequence of Uniform(0,1) random variables.

Question: You are working for an engineering company that wants to model failure of circuits. You may assume that a circuit has n components whose life-times have $\text{Exp}(\lambda_i)$ distribution. How can you generate n variables that would have the desired distributions?

Solution:The cdf's are $F_i(x) = 1 - e^{-\lambda_i x}$.So we let $G_i = G(U_i)$ where $G(u) = -\log(1-u)/\lambda_i$.