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Introduction to probability
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book:

Probability

Section 4.2



Random Times

Random times are often described by a 
distribution with a density.

Examples:

•Lifetime of an individual from a given population.

•Time until decay of a radioactive atom.

•Lifetime of a circuit.

•Time until a phone call arrives.



Random Times
•If T is a random time then its range is [0,∞).       

•A random time with the density f(t) satisfies: 

P(a <T≤ b) =∫ab f(t)dt .

•The probability of surviving past time s is called 
the Survival Function:

P(T>s) = ∫s∞ f(t)dt.

•Note that The Survival Function completely 
characterizes the distribution:

P(a <T≤ b)  = P(T>a) – P(T>b).



Exponential Distribution

Definition: A random time T has an Exponential(λ) 
Distribution if it has a probability density 

f(t)=λ e-λ t,  (t ⊤ 0).

•Equivalently, for (a ≤ b <∞)

P(a<T<b) = ∫ab λ e-λ t dt= e-λ a – e-λ b .

•Equivalently:  P(T>t) = e-λ t,  (t ⊤ 0).

Claim: If T has Exp(λ) distribution then:

E(T)=SD(T) = 1/λ



Exponential densities
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f(t)=λ e-λ t,  (t ⊤ 0).



Memoryless Property
Claim: A positive random variable T has the Exp(λ)
distribution iff T has the memoryless property :

P(T>t+s|T>t) = P(T>s) , (t,s > 0)

•Proof: If T∼ Exp(λ), then

P(T>t+s |T>t) = P(T>t+s & T>t)/P(T>t) = P(T>t+s)/P(T>t) 

= e-λ( t+s)/e-λ t = e-λ s =     P(T>s)

• Conversely, if T has the memoryless property, the survival 
function G(t)=P(T>t) must solve G(t+s) = G(t)G(s) .

•Thus L(t) = log G(t) satisfies L(t+s) = L(t) + L(s)

and L is decreasing. 

•This implies L(T) = -λ t or G(t) = e-λ t



Memoryless Property

Mr. D. is expecting a phone call. 

Given that up to the time t minutes the call hasn’t 
come, the chance that the phone call will not arrive 
in the next s min. is the same as the chance that it 
hasn’t come in the first s min.

P(T>t+s|T>t) = P(T>s),  
(t,s ≥ 0).



Hazard Rate

The constant parameter λ can be interpreted as                
the instantaneous death rate or hazard rate:

P(T ≤ t + ∆| T > t)   = 1 - P(T > t + ∆| T > t )             

= 1 – P(T > ∆), by the memoryless property

= 1 – e-λ∆

= 1 – [1 - λ ∆ + ½ (λ ∆)2 - …] 

≈ λ ∆

The approximation holds if ∆ is small (so we can 
neglect higher order terms).



Exponential & Geometric 
Distributions

Claim:

Suppose G(p) has a geometric p distribution, then 

for all t and λ: limp → 0 P(pG(p)/λ > t) = e-λ t. 

Proof:

• limp -> 0 P(p G(p)/λ>t) = limp -> 0 P(G(p)> λ t/p) 

= limp -> 0 (1-p) λ t/p

= limp -> 0 (1-p) λ t/p = e- λ t .



Relationship to the Poisson Process

0 1

Let the unit interval be subdivided into n cells of 
length 1/n each occupied with probability 

p = λ /n.

Note that the number of occupied cells is
Bin(n,λ/n).



Relationship to the Poisson Process

Number of successes in (t-s) n trials is
distributed as  Bin((t-s) n,λ/n) ≈ Poisson((t-s)λ).

s t

Question: What’s the distribution of the successes in an 
interval (s,t)?

Time  = (# of empty cells+1)* 1/n ∼

~ Geom(λ /n)*1/n  ≈ exp(λ).

Question: What is the distribution of Wi’s, the 
waiting times between success i-1 and success i.

W2= 3*1/n W3=2/n W4= 1/n W5= 2/n W6= 3/n W7= 1/n W8= 1/nW9= 1/n



Two descriptions of Poisson 
Arrival Process

1. Counts of arrivals:

• The Number of arrivals in a fixed time 
interval of length t is a Poisson(λt) random 
variable: 

• P(N(t) = k) = e- λt (λt)-k/k!

• # of arrivals on disjoint intervals are 
independent. 

2. Times between successes:

• Waiting times Wi between successes are 
Exp(λ) random variables: P(Wi>t) = e-λ t

• The random variables Wi are independent. 



Poisson Arrival Process

•So the number of calls N(s,t) between the minutes s and t 
satisfies: 

N(s,t) ∼ Poisson(3(t-s)).

•The waiting time between the (i-1)st and the ith calls 
satisfies: 

Wi ∼ Exp(3).

•Suppose phone calls are coming into a 
telephone exchange at an average rate 
of λ= 3 per minute.

Question: What’s the probability that no call arrives 
between t=0 and t=2?

Solution: N(0,2) ∼ Poisson(6),   P(N(0,2) = 0 ) = e-6
=0.0025.



Poisson Arrival Process

Question: What’s the probability that the first call 
after t=0 takes more than 2 minute to arrive?

Solution: W1 ∼ Exp(3),   P(W1 ≥ 2 ) = e-3*2 =0.0025.

Note: the answer is the same as in the first question.

So for the number of calls between the minutes s and t, we have:

N(s,t) ∼ Poisson(3(t-s)).

For the waiting time between the (i-1)st and the ith calls, we have:

Wi ∼ Exp(3).

Suppose phone calls are coming into a telephone 
exchange at an average rate of λ= 3 per minute.



Poisson Arrival Process

Question: What’s the probability that no call arrives 
between t=0 and t=2 and at most 4 calls arrive 
between  t=2 and t=3 ?

Solution: By independence of N(0,2) and N(2,3), this is  

P(N(0,2) = 0) * P(N(2,3) ≤ 4) 

= e-6 e-3 (1 + 3 + 32/2! + 33/3! + 34/4!) =0.0020,

So for the number of calls between the minutes s and t, we have:

N(s,t) ∼ Poisson(3(t-s)).

For the waiting time between the (i-1)st and the ith calls, we have:

Wi ∼ Exp(3).

Suppose phone calls are coming into a telephone 
exchange at an average rate of λ= 3 per minute.



Poisson Arrival Process

Question: What’s the probability that the fourth call
arrives within 30 seconds of the third?

Solution: P(W4 ≤ 0.5) = 1 – P(W4 > 0.5) = 1 - e-3/2 =0.7769.

So for the number of calls between the minutes s and t, we have:

N(s,t) ∼ Poisson(3(t-s)).

For the waiting time between the (i-1)st and the ith calls, we have:

Wi ∼ Exp(3).

Suppose phone calls are coming into a telephone 
exchange at an average rate of λ= 3 per minute.



Poisson Arrival Process

Question: What’s the probability that the fifth call
takes more than 2 minutes to arrive?

Solution: P(W1 + W2 + W3 + W4 + W5 > 2) = P(N(0,2) ≤ 4) 

P(N(0,2) ≤ 4) = e-6 (1 + 6 + 62/2! + 63/3! + 64/4!) =0.2851.

So for the number of calls between the minutes s and t, we have:

N(s,t) ∼ Poisson(3(t-s)).

For the waiting time between the (i-1)st and the ith calls, we have:

Wi ∼ Exp(3).

Suppose phone calls are coming into a telephone 
exchange at an average rate of λ= 3 per minute.



Poisson rth Arrival Times
•Let Tr denote the time of the rth arrival in a 
Poisson process with intensity λ. The distribution 
of Tr is called Gamma(r,λ) distribution.
• Note that: Tr= W1 + W2 + … + Wr, where Wi’s
are the waiting times between arrivals.

•Density: P(Tr ∈ (t,t+dt))/dt = P[N(0,t) = r-1] * (Rate);

•Right tail probability:  P(Tr > dt) = P(N(0,t) ≤ r-1);

•Mean and SD: 



Gamma Densities for r=1 to 10.
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Due to the central limit theorem, the 
gamma(r,λ) distribution becomes 
asymptotically normal as r → ∞ . 



Relationship between Poisson and 
Exponential.

Poisson (λt) ≤ k-1

Gamma (k, λ) > t

Gamma (k, λ)

Poisson (λt) 

(fixed time t)

Exponential (λ) 
(time)

Continuous

Binomial (n, p) ≤ k-1

NegBin (k, λ) > n

NegBin (k, λ)

Binomial (n, p) 

(fixed trials n)

Geometric (p) 
(trials)

DiscreteProperty/idea

P(less than k 
successes in some 
time)

P(kth success/hit is 
after some time)

Wait time until k 
successes

Number of 
successes in a fixed 
interval

Wait time until one 
success


