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Random Times

Random times are often described by a
distribution with a density.

Examples:

‘Lifetime of an individual from a given population.

» Time until decay of a radioactive atom.
‘Lifetime of a circuit.

- Time until a phone call arrives.




Random Times
If Tis a random time then its range is [0,»).

*A random time with the density f(t) satisfies:
P(a <T< b) =J.2 f(t)dt .

*The probability of surviving past time s is called
the Survival Function:

P(T>s) = [.» f(1)dTt.

‘Note that The Survival Function completely
characterizes the distribution:

P(a <T< b) = P(T>a) - P(T>b).




Exponential Distribution

Definition: A random time T has an Exponential(A)
Distribution if it has a probability density

f(t)=Ae?t, (+ T 0).
*Equivalently, for (a < b <)
P(a<T<b) = [bA ert dt=era-erb

‘Equivalently: P(T>t)=e?t, (+ T O).

Claim: If T has Exp()) distribution then:
E(T)=SD(T) = 1/A




Exponential densities

f(t)=A e*t, (+ T 0).




Memoryless Property

Claim: A positive random variable T has the Exp()A)
distribution iff T has the memoryless property :

P(T>t+s| T>1) = P(T>s) , (t,s > 0)
‘Proof: If TOExp(A), then
P(T>t+s | T>1) = P(T>t+s & T>t)/P(T>1) = P(T>1+s)/P(T>t)
= e Mis)/ert = ers = P(T>s)

» Conversely, if T has the memoryless property, the survival
function G(1)=P(T>t) must solve G(t+s) = G(1)6(s) .

*Thus L(t) = log 6(t) satisfies L(t+s) = L(T) + L(s)
and L is decreasing.
*This implies L(T) = -A t or 6(1) = e *




Memoryless Property

Mr. D. is expecting a phone call.

Given that up to the time t minutes the call hasn't
come, the chance that the phone call will not arrive
in the next s min. is the same as the chance that it
hasn't come in the first s min.

P(T>t+s| T>t) = P(T>s),
(t,s > 0).




Hazard Rate

The constant parameter A can be interpreted as
the instantaneous death rate or hazard rate:

P(T<s ++A| T>1) =1-P(T>1t+A| T>1)
= 1-P(T >A), by the memoryless property
=1 - e
=1-[1-ANA+5(ANA2- ]
=A A

The approximation holds if A is small (so we can
neglect higher order terms).




Exponential & Geometric

Distributions
Claim:

Suppose G(p) has a geometric p distribution, then
forall ¥ and A: lim, _ o P(pG(p)/A > t) = e™ ™.

Proof:

*lim, o P(p G(p)/A>1) = lim, , o P(G(p)> A 1/p)

imp oG (1_p)L At/p)

im, o (l-p)* P =e 1,




Relationship to the Poisson Process

Let the unit interval be subdivided into n cells of
length 1/n each occupied with probability

p=A/n.

0

Note that the number of occupied cells is
Bin(n A/n).




Relationship to the Poisson Process

Question: What's the distribution of the successes in an
interval (s,1)?
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Number of successes in (t-s) n trials is
distributed as Bin((t-s) n,A/n) = Poisson((t-s)A).

Question: What is the distribution of W.'s, the
waiting times between success i-1 and success i.

Time = (# of empty cells+1)* 1/n O
~ Geom(A /n)*1/n =exp(M).




Two descriptions of Poisson
Arrival Process
. Counts of arrivals:

The Number of arrivals in a fixed time
interval of length t is a Poisson(At) random
variable:

P(N(t) = k) = e- 2 (At) /K

# of arrivals on disjoint intervals are
independent.

2. Times between successes:

Waiting times W, between successes are
Exp(A\) random variables: P(W>t) = e* 1t

The random variables W, are independent.




Poisson Arrival Process

-Suppose phone calls are coming into a
telephone exchange at an average rate
of A= 3 per minute.

*So the number of calls N(s,t) between the minutes s and t
satisfies:

N(s,t) OPoisson(3(t-s)).

*The waiting time between the (i-1)st and the ith calls
satisfies:

W, OExp(3).

Question: What's the probability that no call arrives
between t=0 and t=2?

Solution: N(0,2) OPoisson(6), P(N(0,2)=0)=e*®
=0.0025.




Poisson Arrival Process

Suppose phone calls are coming into a telephone " \|7
exchange at an average rate of A= 3 per minute. i

So for the number of calls between the minutes s and t, we have:
N(s,t) OPoisson(3(1-s)).
For the waiting time between the (i-1)s" and the it calls, we have:

W, O Exp(3).

Question: What's the probability that the first call
after t=0 takes more than 2 minute to arrive?

Solution: W; OExp(3), P(W;= 2)=e32=0.0025.

Note: the answer is the same as in the first question.




Poisson Arrival Process

Suppose phone calls are coming into a telephone " \|7
exchange at an average rate of A= 3 per minute. i

So for the number of calls between the minutes s and t, we have:
N(s,t) OPoisson(3(1-s)).

For the waiting time between the (i-1)s* and the it calls, we have:

W. OExp(3).
Question: What's the probability that no call arrives
between =0 and t=2 and at most 4 calls arrive
between t=2 and t=3 ?

Solution: By independence of N(0,2) and N(2,3), this is
P(N(0,2) = 0) * P(N(2,3) < 4)
=ebe3(1+3+32/21+33/3!+34/41) =0.0020,




Poisson Arrival Process \

Suppose phone calls are coming into a telephone 7
exchange at an average rate of A= 3 per minute. i

So for the number of calls between the minutes s and t, we have:
N(s,t) OPoisson(3(1-s)).
For the waiting time between the (i-1)s" and the it calls, we have:

W, O Exp(3).

Question: What's the probability that the fourth call
arrives within 30 seconds of the third?

Solution: P(W, < 0.5) = 1 - P(W, > 0.5) = 1 - e-3/2=0.7769.




Poisson Arrival Process

Suppose phone calls are coming into a telephone " \|7
exchange at an average rate of A= 3 per minute. i

So for the number of calls between the minutes s and t, we have:
N(s,t) OPoisson(3(1-s)).

For the waiting time between the (i-1)s" and the it calls, we have:

W, O Exp(3).

Question: What's the probability that the fifth call
takes more than 2 minutes to arrive?

Solution: P(W; + W, + W5 + W, + W5 > 2) = P(N(0,2) < 4)
PIN(O,2)<4)=eo(1+6+62/2! + 63/3] + 64/4]) =0.2851.




Poisson rth Arrival Times

‘Let T, denote the time of the rth arrival in a
Poisson process with intensity A. The distribution
of T. is called Gamma(r,A\) distribution.

* Note that: T=W;+W,+ . +W, whereW:s
are the waiting times between arrivals.

Density: P(T. O (t,#+dt))/dt = P[N(O,t) = r-1] * (Rate);
Y ()\t)’r—l

. 1)!)\dt

P(T, e (t,t+dt)) = e

‘Right tail probability: P(T > dT) P(N(O,t) < r-1);

BVeVk
P(T, > t) = zzjoe & I

‘Mean and SD: E(Tr) =r/A  SD(Ty) = 7/




Gamma Densities for r=1 1o 10.

Due to the central limit theorem, the
gamma(r,A) distribution becomes
asymptotically normal as r - o .
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Time in multiples of 1/A.




Relationship between Poisson and

Exponential.

Property/idea

Discrete

Continuous

Wait time until one
success

Geometric (p)
(trials)

Exponential (A)
(time)

Number of
successes in a fixed
interval

Binomial (n, p)
(fixed trials n)

Poisson (At)
(fixed time t)

Wait time until k
successes

NegBin (k, A)

Gamma (k, A)

P(kth success/hit is
after some time)

NegBin (k, A) > n

Gamma (k, A) > T

P(less than k
successes in some
time)

Binomial (n, p) < k-1

Poisson (At) < k-1




