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Examples of Continuous Random
Variables

Example 1.
X -- The distance traveled by

a golf-ball hit by Tiger Woods

IS a continuous random
variable.

PointedMagazine.com




Examples of Continuous Random
Variables

Example 2:
Y - The total radioactive

emission per time interval
IS a continuous random
variable.

Colored images of the radioactive emission of a-particles from radium.
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Examples of Continuous Random
variables

Example 3:

Z ~ N(O,1) -

Z approximates (Bin(10000,1/2)-5000)/50
random variable.




How can we specify distributions?

What is
P {X1iger=100.1 ft} = 22
P {Xi4-=100.0001 f1}=?7?
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Continuous Distributions

» Continuous distributions are determined by
a probability density f.

* Probabilities are defined by areas under
the graph of f.

» Example: For the golf hit we will have:

100.1
ftiger(w)dw

P(99.9 < X < 100.1) = /
99.9

where fy; .. is the probability density of X.




Interval Probability

Continuous Discrete

P(a< X <b) = [P f(x)dx Pla< X<b)=Y, ... ,P(X=x)




Infinitesimal & Point
Probability

Continuous Discrete

X x+dx X

P(x < X < x+dx) ~ f(x) dx P(X=x)=P(x)
(when f is continuous)




Constraints

Continuous Discrete

‘Non-negative:

f(x) >0 P(z) >0

*Integrates to I:

/__I_Oof(az)da: =3 Z P(x) =1

o0 all x




Expectations

Continuous Discrete

‘Expectation of a function g(X):

B((x)) = | T @ @) de E@()) =Y g(z)P(x)

— 00 all x

-Variance and SD:

Var(X) = E[(X — E(X))?]

SD(X) = \/Var(X)




Independence

Continuous

Discrete

‘Random Variables X and Y are independent

. For all intervals A and B:
P[X [ A YD B] =
P[X O A]P[Y O B].

- This is equivalent to
saying that for all sets
A and B:

P[X 0 A YO B] =

P[X O A]PLY O B].

. For all x and y:
PIX = x,Y= y] =
P[X=x] P[Y=y].

- This is equivalent to
saying that for all sets
A and B:

P[X 0 A YO B] =

P[X O A] P[Y O B].




Uniform Distribution

A random variable X has a uniform
distribution on the interval (a.b),

if X has a density f(x) which is
-constant on (a,b),

- zero outside the interval (a,b) and

- [ B f(x) dx = 1.
*a<x<y<b: P(x<X<y)= (y-x)/(b-a)




Expectation and Variance of
Uniform Distribution

*E(X) = | P x/(b-a) dx = % (b+a)

-E(X?) = | b x2/(b-a) dx = 1/3 (b2+ba+a?)

Var(X) = E(X?2) - E(X)?= 1/3 (b2+ba+a?) - z(b%+2ba+a?)
= 1/12 (b-a)?




Uniform (0,1) Distribution:

‘If X is uniform(a,b) then U = (X-a)/(b-a) is
uniform(0,1). So:

‘E(V) = 2, E(U?) = Jo! x2 dx = 1/3

Var(U) = 1/3 - (3)2 = 1/12 1 T

Using X = U(b-a) + a:

E(X)= E[U(b-a)+a]=(b-a)E[U] +a
= (b-a)/2 + a = (b+a)/2

Var(X) = Var[U (b-a) + a] = (b-a)?Var[U] = (b-a)?/12




The Standard Normal
Distribution

Def: A continuous random variable Z has
a standard normal distribution if Z has

a probability density of the following form:

(¢
(2) = 2, (-ooczee)
2Tl




The Standard Normal Distribution

(2
(== * , (oxze)
211




Standard Normal Integrals

/_—I;OOO o(z)dz =1

E(Z) = /+OO zp(z)dz = 0O

— OO

~+ 00

Var(Z2) =/ 22H(2)dz = 1

— OO




Standard Normal Cumulative
Distribution Function:

o) = [ ¢a)de

PasZ<b) = &(b) - d(a);

The value of ® are tabulated in the
standard normal table.




The Normal Distribution

Def: If Z has a standard normal distribution
and 1 and o >0 are constants then X =0 Z +

U has a Normal(u, o) distribution
Claim: X has the following density:

1 (x=py

e 20 , (-oo<x<oo)

f(x) = oo

We'll see a proof of this claim later




The Normal Distribution

*Suppose X = 0 Z + [ has a normal(u, 02) distribution,

Then:
PcsX<sd)=P(csoZ+ | <d)
=P((c-n)/ o2 <(d-n)/ o)

= ®((c-p)/o) - ((d-p)/o),
And.

EX)=E(cZ+w)=0E(L)+u = N
Var(X) = Var(c Z + n) =62 E(Z) = o2




Normal([L, 62);

n=125, 0=7.91
u=250, 0=11.2




Example: Radial Distance

*A dart is thrown at a circular target of radius 1
by a novice dart thrower. The point of contact is
uniformly distributed over the entire target.

Let R be the distance of the hit
from the center. Find the probability
density of R.

Find P(a <R < b).
Find the mean and variance of R.

Suppose 100 different novices
each throw a dart. What's the
probability that their mean distance
from the center is at least 0.7.




Radial Distance

- Let R be the distance of the hit from the center.
Find the probability density of R.

P(R O (r,r+dr)) = Area of annulus/ total area
= ({r+dr)? - mre)/ 1
= 2rdr

2r, if 0<r <1
fr) = {O, otherwise.




Radial Distance

Find P(a <R < b).

2r, T O0O<r<1
0, otherwise.

2 2 2
P(aSRgb)—/Zrdr—b —a
a

Find the mean and variance of R.

1 2
F(R) :/O 2r2 dr = =

Var(R) = E(R?) — E(R)2 = /01 2r3 dr — E(R)?

-2 (2)2_1
4 3/ 18




Radial Distance

. Suppose 100 different novices each throw a
dart. What's the probability that their mean
distance from the center is at least 0.7.

‘Let R, = distance of the i'th hit from the center,
then R/'s i.i.d. with E(R)=2/3 and Var(R.)=1/18.

*The average A;pp = (R{+ R, + ... + Ry50)/100 is
approximately normal with
B(A100) = B(R) = 2

SD(R) 1

SD(A1na) = _
(4100) V100 /1800

~ 0.0236

So:

0.7 — 0.667
P(A100 > 0.7) = 1-o (

0.0236

) = 1-®(1.40) = 8.7%




Fitting Discrete distributions by
Continuous distributions

*Suppose (X, X5,..., X, ) are sampled from a
continuous distribution defined by a density f(x).

*We expect that the empirical histogram of the
data will be close to the density function.

*In particular, the proportion P, of observations
that fall between q; and q, should be well
approxma’red by

Pa(aga) ~ [ 7 f(2)da

04 05 06 07 08 09 010 011 012




Fitting Discrete distributions by
Continuous distributions
*More formally, letting

y

0, otherwise.

1, ifa; <x<ay

I(aiaaj)(x) =9
‘We expect that:

1 n a; o0
57,;1 I(az‘,aj)(xi> = Pn(a;; a;) = /CL,L-J US /—oo I(a”i’aj)(w)f(x) dz

N

*And more generally for functions g we expect:

o

Oog(a?)f(x) dzx.

|
L L o)~ |




Fitting Discrete distributions by
Continuous distributions

Claim: if (X, X5,,..,X,) is a sequence of
independent random variables each with
density f(x) then:

9@ f(2)da 9

-
P(n;gwa—/

g ) . Varlg(X)]

The claim follows from Chebyshev inequality.




Monte Carlo Method
In the Mote-Carlo method the approximation:

[ g(x)f(x) dx ~ 1/n > g(x;) is used in order to
approximate difficult integrals.

Example: [,! e<os*) dx
take the density to be Uniform(0,1) and

g(X) — e-cos(x3) .




