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Introduction to probability

Follows Jim Pitman’s 
book:

Probability

Section 3.3
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A natural question:

•Is there a good parameter that allow 
to distinguish between these 
distributions? 

•Is there a way to measure the spread?



Variance and Standard Deviation

•The variance of X, denoted by Var(X) is 
the mean squared deviation of X from its 
expected value µ = E(X):

Var(X) = E[(X-µ)2].
The standard deviation of X, denoted by 
SD(X) is the square root of the variance of 
X:

SD(X) = Var(X).



Computational Formula for 
Variance

2 2V a r (X ) =  E (X ) E (X ) .−

Proof:

E[ (X-µ)2] = E[X2 – 2µ X + µ2]

E[ (X-µ)2] = E[X2] – 2µ E[X] + µ2

E[ (X-µ)2] = E[X2] – 2µ2+ µ2

E[ (X-µ)2] = E[X2] – E[X]2

Claim:



Properties of Variance and SD

1. Claim: Var(X) ≥ 0.
Pf: Var(X) = ∑ (x-µ)2 P(X=x) ≥ 0

2.Claim: Var(X) = 0 iff P[X=µ] = 1.



Variance and SD

For a general distribution Chebyshev inequality 
states that for every random variable X, X is 
expected to be close to E(X) give or take a few 
SD(X).  

Chebyshev Inequality:

For every random variable X and all k > 0:

P(|X – E(X)| ≥ k SD(X)) � 1/k2.



Chebyshev’s Inequality

P(|X – E(X)| ≥≥≥≥ k SD(X)) ���� 1/k2

proof:

• Let µ = E(X) and σ = SD(X).

• Observe  that |X–µ| ≥ k σ ⇔ |X–µ|2 ≥ k2 σ 2.

• The RV |X–µ|2 is non-negative, so we can use 
Markov’s inequality:

• P(|X–µ|2 ≥ k2 σ 2) � E [|X–µ|2 ] / k2 σ 2

P(|X–µ|2 ≥ k2 σ 2) � σ 2 / k2 σ 2 = 1/k2.



Variance of Indicators
Suppose IA is an indicator of an event A with 
probability p.   Observe that IA

2 = IA.

Ac A
IA=1=IA2IA=0=IA2

E(IA2) = E(IA) = P(A) = p, so:

Var(IA) = E(IA2) – E(IA)2 = p – p2 = p(1-p).



Variance of a Sum of 
Independent Random Variables

Claim: if X1, X2, …, Xn are independent then: 
Var(X1+X2+…+Xn) = Var(X1)+Var(X2)+…+Var(Xn).

Pf: Suffices to prove for 2 random variables. 

E[( X+Y – E(X+Y) )2 ] = E[( X-E(X) + Y–E(Y) )2] =

E[( X-E(X))2]+ 2 E[(X-E(X)) (Y-E(Y))] +  E(Y–E(Y) )2]=

Var(X) + Var(Y)  + 2 E[(X-E(X))]  E[(Y-E(Y))] (mult.rule) =

Var(X) + Var(Y) + 0



Variance and Mean under scaling 
and shifts

• Claim: SD(aX + b) = |a| SD(X)

• Proof:

Var[aX+b] = E[(aX+b – aµ –b)2] = 

= E[a2(X-µ)2] = a2 σ2

• Corollary: If a random variable X has 

• E(X) = µ and SD(X) = σ > 0, then

• X*=(X-µ)/σ has 

• E(X*) =0 and SD(X*)=1.



Square Root Law

Let X1, X2, … , Xn be 
independent random 
variables with the same 
distribution as X, and 
let Sn be their sum: 

Sn = ∑i=1
n Xi, and 

their average, then:

nSX  =
n



Weak Law of large numbers

Then for every ε > 0:

Thm: Let X1, X2, … be a sequence of independent 
random variables with the same distribution. Let µ
denote the common expected value 

µ = E(Xi).
1 2 n

n
X +X +...+ X

And let  X  = .
n

nP(|X | ) 1  as n .µ ε− < → → ∞



Weak Law of large numbers

Now Chebyshev inequality gives us:

Proof: Let µ = E(Xi) and σ = SD(Xi). Then from the 
square root law we have:

n nE(X ) =  and SD(X ) = .
n

σµ

2

n n
n

P(|X | ) P(|X | )
n n

ε σ σµ ε µ
σ ε

 − ≥ = − ≥ ≤  
 

For a fixed ε right hand side tends to 0 as n 
tends to ∞. 



The Normal Approximation
•Let Sn = X1 + … + Xn be the sum of independent 
random variables with the same distribution. 

•Then for large n, the distribution of Sn is 
approximately normal with mean E(Sn) = n µ and 
SD(Sn) = σ n1/2,

• where µ = E(Xi) and σ = SD(Xi). 

In other words:



Sums of repeated independent random 
variables

Suppose Xi represents the number obtained on 
the i’th roll of a die.

Then Xi has a uniform distribution on the set

{1,2,3,4,5,6}.



Distribution of X1
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Sum of two dice

We can obtain the distribution of S2 = X1 +X2

by the convolution formula:

P(S2 = k) = ∑i=1
k-1 P(X1=i) P(X2=k-i| X1=i),

by independence

= ∑i=1
k-1 P(X1=i) P(X2=k-i).



Distribution of S2
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Sum of four dice

We can obtain the distribution of 

S4 = X1 + X2 + X3 + X4 
= S2 + S’2  again by the 

convolution formula:

P(S4 = k) = ∑i=1
k-1 P(S2=i) P(S’2=k-i| S2=i),

by independence of S2 and S’2
= ∑i=1

k-1 P(S2=i) P(S’2=k-i).



Distribution of S4
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Distribution of S8
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Distribution of S16
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Distribution of S32
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Distribution of S2
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Distribution of S4
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Distribution of S8
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Distribution of S16
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Distribution of S32
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Distribution of X1
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Distribution of S2
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Distribution of S4
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Distribution of S8
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Distribution of S16
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Distribution of S32
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