

Introduction to probability

Stat 134

FAII 2005 Berkeley

Lectures prepared by: Elchanan Mossel elena Shvets

Follows Jim Pitman's book: Probability Section 3.3

<u>A natural question:</u>

•Is there a good parameter that allow to distinguish between these distributions?

•Is there a way to measure the spread?

Variance and Standard Deviation

•The variance of X, denoted by Var(X) is the mean squared deviation of X from its expected value $\mu = E(X)$:

 $Var(X) = E[(X-\mu)^2].$

The standard deviation of X, denoted by SD(X) is the square root of the variance of X:

 $SD(X) = \sqrt{Var(X)}$.

Computational Formula for Variance

Claim:

 $Var(X) = E(X^{2}) - E(X)^{2}$. Proof: $E[(X-\mu)^2] = E[X^2 - 2\mu X + \mu^2]$ $= E[X^2] - 2\mu E[X] + \mu^2$ $= E[X^2] - 2\mu^2 + \mu^2$ $= E[X^2] - E[X]^2$

Properties of Variance and SD 1. <u>Claim</u>: Var(X) \geq 0. <u>Pf</u>: Var(X) = $\sum (x-\mu)^2 P(X=x) \geq 0$

2.<u>Claim</u>: Var(X) = 0 iff $P[X=\mu] = 1$.

Variance and SD

For a general distribution Chebyshev inequality states that for every random variable X, X is expected to be close to E(X) give or take a few SD(X).

Chebyshev Inequality: For every random variable X and all k > 0: $P(|X - E(X)| \ge k SD(X)) \le 1/k^2.$

Chebyshev's Inequality $P(|X - E(X)| \ge k SD(X)) \le 1/k^2$ proof:

- Let $\mu = E(X)$ and $\sigma = SD(X)$.
- Observe that $|X-\mu| \ge k \sigma \Leftrightarrow |X-\mu|^2 \ge k^2 \sigma^2$.
- The RV $|X-\mu|^2$ is non-negative, so we can use Markov's inequality:
- $P(|X-\mu|^2 \ge k^2 \sigma^2) \le E[|X-\mu|^2] / k^2 \sigma^2$

 $\leq \sigma^{2}$ / k^{2} σ^{2} = 1/k^{2}.

Variance of Indicators Suppose I_A is an indicator of an event A with probability p. Observe that $I_A^2 = I_A$.

$E(I_A^2) = E(I_A) = P(A) = p, so:$ Var $(I_A) = E(I_A^2) - E(I_A)^2 = p - p^2 = p(1-p).$

Variance of a Sum of **Independent Random Variables** <u>Claim</u>: if X₁, X₂, ..., X_n are independent then: $Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n).$ Pf: Suffices to prove for 2 random variables. $E[(X+Y - E(X+Y))^2] = E[(X-E(X) + Y-E(Y))^2] =$ $E[(X-E(X))^{2}]+ 2 E[(X-E(X))(Y-E(Y))] + E(Y-E(Y))^{2}]=$ Var(X) + Var(Y) + 2 E[(X-E(X))] E[(Y-E(Y))] (mult.rule) =Var(X) + Var(Y) + 0

Variance and Mean under scaling and shifts

- Claim: SD(aX + b) = |a| SD(X)
- Proof:

Var[aX+b] = E[(aX+b - aµ -b)²] = = E[a²(X-µ)²] = a² σ^{2}

- <u>Corollary:</u> If a random variable X has
- $E(X) = \mu$ and $SD(X) = \sigma > 0$, then
- $X^*=(X-\mu)/\sigma$ has
- $E(X^*) = 0$ and $SD(X^*) = 1$.

Square Root Law

Let X_1, X_2, \dots, X_n be independent random variables with the same distribution as X, and let S_n be their sum: $S_n = \sum_{i=1}^n X_i$, and $\overline{X} = \underline{S_n}$ their average, then:

 $E(S_n) = nE(X)$ $Var(S_n) = nVar(X)$ $SD(S_n) = \sqrt{n}SD(X).$ $E(\bar{X_n}) = E(X)$ $SD(\bar{X_n}) = \frac{SD(X)}{\sqrt{n}}$

Weak Law of large numbers

<u>Thm</u>: Let $X_1, X_2, ...$ be a sequence of independent random variables with the same distribution. Let μ denote the common expected value $\mu = E(X_i)$. And let $\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n}$.

Then for every $\varepsilon > 0$:

 $P(|\overline{X}_n - \mu| < \varepsilon) \rightarrow 1 \text{ as } n \rightarrow \infty.$

Weak Law of large numbers

Proof: Let $\mu = E(X_i)$ and $\sigma = SD(X_i)$. Then from the square root law we have:

$$E(\overline{X}_n) = \mu \text{ and } SD(\overline{X}_n) = \frac{\sigma}{\sqrt{n}}$$

Now Chebyshev inequality gives us:

$$\mathsf{P}(|\overline{\mathsf{X}}_{\mathsf{n}} - \mu| \geq \varepsilon) = \mathsf{P}(|\overline{\mathsf{X}}_{\mathsf{n}} - \mu| \geq \frac{\varepsilon \sqrt{\mathsf{n}}}{\sigma} \frac{\sigma}{\sqrt{\mathsf{n}}}) \leq \left(\frac{\sigma}{\varepsilon \sqrt{\mathsf{n}}}\right)^{2}$$

For a fixed ϵ right hand side tends to 0 as n tends to $\infty.$

The Normal Approximation

•Let $S_n = X_1 + ... + X_n$ be the sum of independent random variables with the same distribution.

•Then for large n, the distribution of S_n is approximately normal with mean $E(S_n) = n \mu$ and $SD(S_n) = \sigma n^{1/2}$.

• where $\mu = E(X_i)$ and $\sigma = SD(X_i)$.

In other words:

$$P(a \leq \frac{S_n - n\mu}{\sigma\sqrt{n}} \leq b) \sim \Phi(b) - \Phi(a)$$

Sums of repeated independent random variables

Suppose X_i represents the number obtained on the i'th roll of a die. Then X_i has a uniform distribution on the set $\{1,2,3,4,5,6\}$.

Sum of two dice

We can obtain the distribution of $S_2 = X_1 + X_2$ by the convolution formula:

 $P(S_2 = k) = \sum_{i=1}^{k-1} P(X_1=i) P(X_2=k-i| X_1=i),$ by independence $= \sum_{i=1}^{k-1} P(X_1=i) P(X_2=k-i).$

Sum of four dice

We can obtain the distribution of $S_4 = X_1 + X_2 + X_3 + X_4 = S_2 + S_2'$ again by the convolution formula:

$$\begin{split} \mathsf{P}(\mathsf{S}_{4} = \mathsf{k}) &= \sum_{i=1}^{k-1} \mathsf{P}(\mathsf{S}_{2} = \mathsf{i}) \, \mathsf{P}(\mathsf{S}'_{2} = \mathsf{k} - \mathsf{i} \mid \mathsf{S}_{2} = \mathsf{i}), \\ & \text{by independence of } \mathsf{S}_{2} \text{ and } \mathsf{S}'_{2} \\ &= \sum_{i=1}^{k-1} \mathsf{P}(\mathsf{S}_{2} = \mathsf{i}) \, \mathsf{P}(\mathsf{S}'_{2} = \mathsf{k} - \mathsf{i}). \end{split}$$

Distribution of S_{16}

Distribution of S_{32}

Distribution of X_1

Distribution of X_1

Distribution of S_2

Distribution of S_{16}

Distribution of S_{32}

