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Introduction to probability

Follows Jim Pitman’s 
book:

Probability

Section 3.2



Mean of a Distribution

•The mean µ of a probability distribution 
P(x) over a finite set of numbers x is defined

• The mean is the average of the these 
numbers weighted by their probabilities:

µ = ∑x x P(X=x)



Expectation

The expectation (also expected value or   
mean) of a random variable X is the mean of 
the distribution of X. 

E(X) = ∑x x P(X=x)



Two Value Distributions

•If X is a Bernoulli(p) variable over {a,b}, then 
E(X) = pa + (1-p)b.

•If we think of p and q as two masses sitting 
over a and b then E(X) would correspond to 
the point of balance: 

a a ab b b



A Fair Die
Let X be the number rolled with a fair die. 
Question:  What is the expected value of X?

1 2 3 4 5 6

Alternatively, we could find the point of 
balance on the histogram:

We can compute E(X)  by definition:

E(X) = 1*1/6 + 1*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6.

= 3.5



Binomial(10, ½)

Question: Let Z be a variable with a 
binomial(10, ½ ) distribution.

What is E[Z]?

10

i=0

E(Z) = iP(Z=i) ∑

By definition:



Binomial(10, ½)
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Binomial(10, ½)
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We could also look at the histogram:



Addition Rule

•For any two random variables X and Y defined 
over the same sample space

E(X+Y) = E(X) + E(Y).

•Consequently, for a sequence of random 
variables X1,X2,…,Xn,

E(X1+X2+…+Xn) = E(X1) + E(X2) +…+ E(Xn).

• Therefore the mean of Bin(10,1/2) = 5.



Multiplication Rule and Inequalities

•Multiplication rule: E[aX] = a E[X].

•E[aX] = ∑x a x P[X = x] = a ∑x P[X = x] = a E[x]

•If X ≥ Y then E[X] ≥ E[Y].

•This follows since X-Y is non negative and 

•E[X] – E[Y] = E[X-Y] ≥ 0.



Sum of Two Dice
•Let T be the sum of two dice. What’s E(T)?

•The “easy” way: 

E(T) = ∑t tP(T=t).

This sum will have 11 terms.

•We could also find the center of mass of 
the histogram (easy to do by symmetry). 



histogram for TProbability distribution for T.
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Sum of Two Dice

•Or we can using the addition rule:  

T=X1 + X2,  where X1 = 1st role, X2 = 2nd:

E(T) = E(X1)+ E(X2) = 3.5+3.5 = 7.



Indicators

Indicators associate 0/1 valued random 
variables to events. 

Definition: The indicator of the event A, 

IA is the random variable that takes the 
value 1 for outcomes in A and the value 0 
for outcomes in Ac.



Indicators

Suppose IA is an indicator of an event A with 
probability p.   

Ac A
IA=1IA=0



Expectation of Indicators

Then:

E(IA)= 1*P(A) + 0*P(Ac) = P(A) = p.

P(Ac) P(A)
IA=1IA=0



Expected Number of Events that 
Occur

•Suppose there are n events A1, A2, …, An.   

• Let X = I1 + I2 + … + In where Ii is the 
indicator of Ai

• Then X counts the number of events 
that occur. 

•By the addition rule:

E(X) = P(A1) + P(A2) + … P(An).



Repeated Trials

•Let Xi = indicator of success on the ith coin 
toss (Xi = 1 if the ith coin toss = H head, and 
Xi = 0 otherwise).

•The sequence X1 , X2 , … , Xn is a sequence of n 
independent variables with Bernoulli(p) 
distribution over {0,1}.

•The number of heads in n coin tosses given 
by Sn = X1 + X2 + … + Xn. 

•E(Sn) = nE(Xi) = np

•Thus the mean of Bin(n,p) RV = np.



Expected Number of Aces

•Let Y be the number of aces in a poker hand.

•Then:

Y = I1st ace + I3rd ace + I4th ace + I5th ace + I2nd ace .

•And: E(Y) = 5*P(ace) = 5*4/52 = 0.385.

•Alternatively, since Y has the hyper-
geometric distribution we can calculate:
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Non-negative Integer Valued RV

•Suppose X is an integer valued, non-negative 
random variable.

•Let Ai = {X ≥ i} for i=1,2,…; 

•Let Ii the indicator of the set Ai.

•Then                                               

X=∑i Ii.



Non-negative Integer Valued RV

•The equality 

X(outcome)=∑i Ii(outcome) 

follows since if X(outcome) = i, then 

outcome∈ A1∩A2∩…∩Ai.  but not to Aj, j>i.

•So (I1+I2+…+Ii+Ii+1+…)(outcome) =

1+1+…+1+0+0+… = i.



Tail Formula for Expectation
Let X be a non-negative integer valued RV,

Then:

E(X)    = E (∑i Ii ) = ∑i E( Ii ) 

E(X) = ∑i P(X≥ i),    i=1,2,3…

…4*P(X=4)3*P(X=3)2*P(X=2)1*P(X=1)E(X) = 

…P(X=4)P(X=3)P(X=2)P(X=1)P(X≥1)

…P(X=4)P(X=3)P(X=2)P(X≥2)

…P(X=4)P(X=3)P(X≥3)

…P(X=4)P(X≥4)

……



Minimum of 10 Dice

Suppose we roll a die 10 times and let X be 
the minimum of the numbers rolled.

Here X = 2.

Question: what’s the expected value of X?



Minimum of 10 Dice

•Let’s use the tail formula to compute E(X):

E(X)= ∑i P(X≥ i). 
P(X≥1)= 1;

P(X≥2)= (5/6)10;

P(X≥3)= (4/6)10;

P(X≥4)= (3/6)10;

P(X≥5)= (2/6)10;

P(X≥6)= (1/6)10

E(X) = (610+510+410+310+410+310)/610

E(X) = 1.17984



Indicators

•If the events A1, A2, …, Aj are 
mutually exclusive then 

I1 + I2 +… + Ij = IA1 ∪ A2 ∪ … ∪ Aj

•And 

P(∪ji=1 Ai) = ∑i P(Ai).



Tail Formula for Expectation

Let X be a non-negative integer valued RV,

Then:

E(X)    = E (∑i Ii ) = ∑i E( Ii ) 

E(X) = ∑i P(X≥ i),    i=1,2,3…



Boole’s Inequality

For a non-negative integer valued X we can 
obtain Boole’s inequality: 

P(X≥1) � ∑i P(X ≥ i) = E(X)



Markov’s Inequality
Markov inequality:
If X≥0, then for every a > 0

P(X≥a) � E(X)/a.

•This is proven as follows.
• Note that if X ≥ Y then E(X) ≥ E(Y).
•Take Y = indicator of the event {X ≥ a}.
•Then E(Y) = P(X ≥ a) and X ≥ aY so:
• E(X) ≥ E(aY) = a E(Y) = a P(X ≥ a).



Expectation of a Function of a 
Random Variable   

•For any function g defined on the range space of a 
random variable X with a finite number of values 

E[g(X)] = ∑x g(x) P(X=x).

Proof:
•Note that: 

P(g(X)=y)= ∑{x:g(x)=y} P(X=x).
•Therefore:

E[g(X)] = ∑y y P(g(X)=y) = ∑y∑{x:g(x)=y} g(x)P(X=x)
= ∑x g(x) P(X=x).



Expectation of a Function of a 
Random Variable   

•Constants: 
g(X)=c ⇒ E[g(x)]=c.

•Linear functions: 
g(X)=aX + b ⇒ E[g(x)]=aE(X)+b.

(These are the only cases when E(g(X)) = g(E(X)).)



Expectation of a Function of a 
Random Variable

•Monomials: 
g(X)=Xk ⇒ E[g(x)]=∑x xkP(X=x).

∑x xkP(X=x) is called the kth moment of X.



Expectation of a Function of a 
Random Variable   

Question: For X representing the number on a 
die, what is the second moment of X?

∑x x2P(X=x)= ∑x x2/6 = 1/6*(1 + 4 + 9 + 16 + 25 + 36)

= 91/6 = 15.16667   



Expectation of a Function of  
Several Random Variables

•If X and Y are two random variables we obtain:

E(g(X,Y))= ∑{all (x,y)} g(x,y)P(X=x, Y=y).

This allows to prove that E[X+Y] = E[X] + E[Y]:

E(X) = ∑{all (x,y)} x P(X=x, Y=y);

E(Y) = ∑{all (x,y)} y P(X=x, Y=y);

E(X+Y) = ∑{all (x,y)} (x+y) P(X=x, Y=y);

E(X+Y) = E(X) + E (Y)



Expectation of a Function of  
Several Random Variables

E(g(X,Y))= ∑{all (x,y)} g(x,y)P(X=x, Y=y).

Product:
E(XY) = ∑{all (x,y)} xy P(X=x, Y=y);

E(XY) = ∑x ∑y xy P(X=x, Y=y);

Is E(XY) = E(X)E(Y)?



Product Rule for Independent 
Random Variables

•However, if X and Y are independent, 

P(X=x,Y=y)=P(X=x)P(Y=y)

then product formula simplifies:

E(XY) = ∑x ∑y xy P(X=x) P(Y=y) 

= (∑xx P(X=x)) (∑y y P(Y=y)) =

E(X) E(Y)

•If X and Y are independent then:

E(XY) =E(X) E(Y);



Expectation interpretation as a 
Long-Run Average

•If we repeatedly sample from the 
distribution of X then P(X=x) will be 
close to the observed frequency of x in 
the sample.

•E(X) will be approximately the long-run 
average of the sample.



Mean, Mode and Median

• The Mode of X is the most likely possible 
value of X.    
• The mode need not be unique.

• The Median of X is a number m such that 
both     P(X�m) ≥ ½ and P(X ≥ m) ≥ ½.                       
• The median may also  not be unique.

•Mean and Median are not necessarily possible 
values (mode is).



Mean, Mode and Median

For a symmetrical distribution, which has a 
unique Mode, all three: Mean, Mode and 
Median are the same.

mean = mode = median

50% 50%



Mean, Mode and Median

For a distribution with a long right tail Mean is 
greater than the Median.

mean

50% 50%

mode

median



Roulette

Bet Pay-off  

• Straight Up (one number) 35:1

• Split 17:1

• Line/Street (three numbers) 11:1

• Corner (four numbers) 8:1

• Five line (5 numbers-0,00,1,2 or 3) 6:1

• Six line (six numbers) 5:1

• Column (twelve numbers) 2:1

• Dozens (twelve numbers) 2:1

• 1 - 18 1:1

• Even 1:1

• Red 1:1

• Black 1:1

• Odd 1:1

• 19-36 1:1



Betting on Red

Suppose we want to be $1 on Red. Our 
chance of winning is 18/38.

Question:

What should be the pay-off to make it 
a fair bet?



Betting on Red

This question really only makes sense if we 
repeatedly bet $1 on Red.

Suppose that we could win $x if Reds come up 
and lose $1, otherwise.   If X denotes our 
returns then P(X=x) = 18/38; P(X=-1)=20/38.

In a fair game, we expect to break even on 
average.



Betting on Red

Our expected return is:

x*18/38  - 1*20/38.

Setting this to zero gives us 

x=20/18=1.1111111… .

This is greater than the pay-off of 1:1 that is 
offered by the casino. 


