

Introduction to probability

Stat 134

FAII 2005 Berkeley

Lectures prepared by: Elchanan Mossel Yelena Shvets

Follows Jim Pitman's book: Probability Section 3.2

Mean of a Distribution

•The mean μ of a probability distribution P(x) over a finite set of numbers x is defined

 The mean is the average of the these numbers weighted by their probabilities:

 $\mu = \sum_{x} x P(X=x)$

Expectation

The expectation (also expected value or mean) of a random variable X is the mean of the distribution of X.

 $E(X) = \sum_{x} x P(X=x)$

Two Value Distributions

•If X is a Bernoulli(p) variable over $\{a,b\}$, then E(X) = pa + (1-p)b.

 If we think of p and q as two masses sitting over a and b then E(X) would correspond to the point of balance:

A Fair Die

Let X be the number rolled with a fair die. Question: What is the expected value of X?

We can compute E(X) by definition: E(X) = 1*1/6 + 1*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6. = 3.5

Alternatively, we could find the point of balance on the histogram:

Binomial(10, 늘)

Question: Let Z be a variable with a binomial(10, $\frac{1}{2}$) distribution. What is E[Z]?

By definition: $E(Z) = \sum_{i=0}^{10} iP(Z=i)$

Binomial(10, $\frac{1}{2}$)

$$E(Z) = 0 + 1*10\left(\frac{1}{2}\right)^{10} + 2*45\left(\frac{1}{2}\right)^{10} + 3*120\left(\frac{1}{2}\right)^{10} + 4*210\left(\frac{1}{2}\right)^{10} + 5*252\left(\frac{1}{2}\right)^{10} + 6*210\left(\frac{1}{2}\right)^{10} + 7*120\left(\frac{1}{2}\right)^{10} + 8*45\left(\frac{1}{2}\right)^{10} + 9*10\left(\frac{1}{2}\right)^{10} + 10\left(\frac{1}{2}\right)^{10}$$

$$= \left(\frac{1}{2}\right)^{10} (10+90+360+840+1260+1260+840+360+90+10)$$
$$= \frac{5120}{1024} = 5$$

Binomial(10, ½) We could also look at the histogram:

Addition Rule

•For any two random variables X and Y defined over the same sample space E(X+Y) = E(X) + E(Y).

Consequently, for a sequence of random variables X₁,X₂,...,X_n,
E(X₁+X₂+...+X_n) = E(X₁) + E(X₂) + ... + E(X_n).
Therefore the mean of Bin(10,1/2) = 5.

Multiplication Rule and Inequalities

•<u>Multiplication rule</u>: E[aX] = a E[X]. • $E[aX] = \sum_{x} a \times P[X = x] = a \sum_{x} P[X = x] = a E[x]$

$\begin{array}{l} \cdot \underline{If \ X \geq Y \ then} \ \mathbb{E}[X] \geq \mathbb{E}[Y]. \\ \cdot \text{This follows since } X-Y \ \text{is non negative and} \\ \cdot \mathbb{E}[X] - \mathbb{E}[Y] = \mathbb{E}[X-Y] \geq 0. \end{array}$

Sum of Two Dice •Let T be the sum of two dice. What's E(T)?

```
• The "easy" way:

E(T) = \sum_{t} tP(T=t).

This sum will have 11 terms.
```

•We could also find the center of mass of the histogram (easy to do by symmetry).

Sum of Two Dice

•Or we can using the addition rule: T=X₁ + X₂, where X₁ = 1st role, X₂ = 2nd:

 $E(T) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7.$

Indicators

Indicators associate 0/1 valued random variables to events.

<u>Definition</u>: The indicator of the event A,

 I_A is the random variable that takes the value 1 for outcomes in A and the value 0 for outcomes in A^c .

Indicators

Suppose I_A is an indicator of an event A with probability p.

Expectation of Indicators

Expected Number of Events that Occur

- Suppose there are n events $A_1, A_2, ..., A_n$.
- Let $X = I_1 + I_2 + ... + I_n$ where I_i is the indicator of A_i
- Then X counts the number of events that occur.
- •By the addition rule:

 $E(X) = P(A_1) + P(A_2) + ... P(A_n).$

Repeated Trials

- •Let X^i = indicator of success on the ith coin toss (X^i = 1 if the ith coin toss = H head, and X^i = 0 otherwise).
- The sequence X^1 , X^2 , ..., X^n is a sequence of n independent variables with Bernoulli(p) distribution over {0,1}.
- •The number of heads in n coin tosses given by $S_n = X^1 + X^2 + \dots + X^{n}$.
- $\cdot E(S_n) = nE(X^i) = np$
- Thus the mean of Bin(n,p) RV = np.

Expected Number of Aces

Let Y be the number of aces in a poker hand.Then:

 $Y = I_{1st ace} + I_{3rd ace} + I_{4th ace} + I_{5th ace} + I_{2nd ace}$ •And: E(Y) = 5*P(ace) = 5*4/52 = 0.385.

•Alternatively, since Y has the hypergeometric distribution we can calculate:

$$\mathsf{E}(\mathsf{Y}) = \sum_{x=0}^{4} \mathsf{Y} \quad \frac{\binom{4}{\mathsf{Y}}\binom{48}{5-\mathsf{Y}}}{\binom{52}{5}}$$

Non-negative Integer Valued RV

- •Suppose X is an integer valued, non-negative random variable.
- •Let $A_i = \{X \ge i\}$ for i=1,2,...;
- •Let I_i the indicator of the set A_i .
- Then

 $X=\sum_{i} I_{i}$

Non-negative Integer Valued RV

•The equality $X(outcome)=\sum_i I_i(outcome)$ follows since if X(outcome) = i, then $outcome \in A_1 \cap A_2 \cap \dots \cap A_i$, but not to A_i , j > i.

•So $(I_1 + I_2 + ... + I_i + I_{i+1} + ...)$ (outcome) = 1+1+...+1+0+0+... = i. **Tail Formula for Expectation** Let X be a non-negative integer valued RV, Then:

 $E(X) = E(\sum_{i} I_{i}) = \sum_{i} E(I_{i})$

 $= \sum_{i} P(X \ge i), \quad i=1,2,3...$ P(X≥4) P(X=4)... P(X≥3) P(X=4)P(X=3) ... P(X≥2) P(X=4)P(X=3) P(X=2) ... P(X≥1) P(X=3) P(X=4)P(X=2) P(X=1) ... 2*P(X=2) 3*P(X=3) 4*P(X=4)1*P(X=1) E(X) =

Minimum of 10 Dice

Suppose we roll a die 10 times and let X be the minimum of the numbers rolled.

Here X = 2.

Question: what's the expected value of X?

Minimum of 10 Dice •Let's use the tail formula to compute E(X): $E(X) = \sum_{i} P(X \ge i).$ P(X≥1)= 1; P(X≥2)= (5/6)¹⁰; P(X≥3)= (4/6)¹⁰; $E(X) = (6^{10} + 5^{10} + 4^{10} + 3^{10} + 4^{10} + 3^{10})/6^{10}$ P(X≥4)= (3/6)¹⁰; = 1.17984P(X≥5)= (2/6)¹⁰; P(X≥6)= (1/6)¹⁰

Indicators

•If the events $A_1, A_2, ..., A_j$ are mutually exclusive then $I_1 + I_2 + ... + I_j = I_{A_1 \cup A_2 \cup ... \cup A_j}$ •And

 $\mathsf{P}(\cup_{i=1}^{j} A_i) = \sum_i \mathsf{P}(A_i).$

Tail Formula for Expectation

Let X be a non-negative integer valued RV, Then: $E(X) = E(\sum_{i} I_{i}) = \sum_{i} E(I_{i})$ $= \sum_{i} P(X \ge i), \quad i=1,2,3...$

Boole's Inequality

For a non-negative integer valued X we can obtain Boole's inequality:

$P(X \ge 1) \le \sum_{i} P(X \ge i) = E(X)$

Markov's Inequality

Markov inequality: If $X \ge 0$, then for every a > 0 $P(X \ge a) \le E(X)/a$. This is proven as follows. • Note that if $X \ge Y$ then $E(X) \ge E(Y)$. • Take Y = indicator of the event $\{X \ge a\}$. • Then $E(Y) = P(X \ge a)$ and $X \ge aY$ so:

• $E(X) \ge E(aY) = a E(Y) = a P(X \ge a).$

•For any function g defined on the range space of a random variable X with a finite number of values $E[g(X)] = \sum_{x} g(x) P(X=x).$

Proof: •Note that: $P(g(X)=y)=\sum_{\{x:g(x)=y\}} P(X=x).$ •Therefore: $E[g(X)] = \sum_{y} y P(g(X)=y) = \sum_{y} \sum_{\{x:g(x)=y\}} g(x)P(X=x)$ $= \sum_{x} g(x) P(X=x).$

Constants:

 $g(X)=c \Rightarrow E[g(x)]=c.$

•Linear functions: $g(X)=aX + b \Rightarrow E[g(x)]=aE(X)+b.$

(These are the only cases when E(g(X)) = g(E(X)).)

•Monomials: $g(X)=X^{k} \Rightarrow E[g(x)]=\sum_{x} x^{k}P(X=x).$

$\sum_{x} x^{k} P(X=x)$ is called the kth moment of X.

<u>Question:</u> For X representing the number on a die, what is the second moment of X?

 $\sum_{x} x^{2} P(X=x) = \sum_{x} x^{2}/6 = 1/6^{*}(1+4+9+16+25+36)$ = 91/6 = 15.16667

•If X and Y are two random variables we obtain: $E(g(X,Y)) = \sum_{\{all (x,y)\}} g(x,y)P(X=x, Y=y).$

This allows to prove that E[X+Y] = E[X] + E[Y]: $E(X) = \sum_{\{all (x,y)\}} \times P(X=x, Y=y);$ $E(Y) = \sum_{\{all (x,y)\}} y P(X=x, Y=y);$ $E(X+Y) = \sum_{\{all (x,y)\}} (x+y) P(X=x, Y=y);$

E(X+Y) = E(X) + E(Y)

 $\mathsf{E}(g(\mathsf{X},\mathsf{Y}))=\sum_{\{\mathsf{all}\ (\mathsf{x},\mathsf{y})\}}g(\mathsf{x},\mathsf{y})\mathsf{P}(\mathsf{X}=\mathsf{x},\ \mathsf{Y}=\mathsf{y}).$

Product: $E(XY) = \sum_{\{all (x,y)\}} xy P(X=x, Y=y);$ $E(XY) = \sum_{x} \sum_{y} xy P(X=x, Y=y);$ Is E(XY) = E(X)E(Y)?

Product Rule for Independent Random Variables However, if X and Y are independent, P(X=x, Y=y)=P(X=x)P(Y=y)then product formula simplifies: $E(XY) = \sum_{x} \sum_{y} xy P(X=x) P(Y=y)$ = $(\sum_{x} \times P(X=x)) (\sum_{y} y P(Y=y)) =$ E(X) E(Y)•If X and Y are independent then: E(XY) = E(X) E(Y);

Expectation interpretation as a Long-Run Average

•If we repeatedly sample from the distribution of X then P(X=x) will be close to the observed frequency of x in the sample.

 $\cdot E(X)$ will be approximately the long-run average of the sample.

Mean, Mode and Median

- The Mode of X is the most likely possible value of X.
- The mode need not be unique.
- The Median of X is a number m such that both $P(X \le m) \ge \frac{1}{2}$ and $P(X \ge m) \ge \frac{1}{2}$.
- The median may also not be unique.

•Mean and Median are not necessarily possible values (mode is).

Mean, Mode and Median

For a symmetrical distribution, which has a unique Mode, all three: Mean, Mode and Median are the same.

Mean, Mode and Median

For a distribution with a long right tail Mean is greater than the Median.

Roulette

	Bet	Pay-off
•	Straight Up (one number)	35:1
•	Split	17:1
•	Line/Street (three numbers)	11:1
•	Corner (four numbers)	8:1
•	Five line (5 numbers-0,00,1,2 or 3)	6:1
•	Six line (six numbers)	5:1
•	Column (twelve numbers)	2:1
•	Dozens (twelve numbers)	2:1
•	1 - 18	1:1
•	Even	1:1
•	Red	1:1
•	Black	1:1
•	Odd	1:1
•	19-36	1:1

Betting on Red

Suppose we want to be \$1 on Red. Our chance of winning is 18/38.

Question: What should be the pay-off to make it a fair bet?

Betting on Red

This question really only makes sense if we repeatedly bet \$1 on Red.

Suppose that we could win x if Reds come up and lose 1, otherwise. If X denotes our returns then P(X=x) = 18/38; P(X=-1)=20/38.

In a fair game, we expect to break even on average.

Betting on Red

Our expected return is: x*18/38 - 1*20/38.

Setting this to zero gives us x=20/18=1.1111111...

This is greater than the pay-off of 1:1 that is offered by the casino.