

Introduction to probability

Stat 134

FAII 2005 Berkeley

Lectures prepared by: Elchanan Mossel Yelena Shvets

Follows Jim Pitman's book: Probability Section 2.5

Sampling with replacement

•Suppose we have a population of size N with G good elements and B bad elements. We draw n times with replacement from this population.

•The number g of good elements in the sample will have a binomial(n,p) distribution with p=G/N and 1-p = B/N

P(g good and b bad) =
$$\binom{n}{g} \frac{(G)^{g}(B)^{b}}{(N)^{n}}$$

Sampling with replacement

- •If n is large, this will be well approximated by $N(np, \sqrt{np(1-p)})$.
- •The proportion of good elements in the sample g/n will lie in the interval $p \pm \frac{1}{\sqrt{n}}$ with probability 95%.

•If the p is not known, it can be estimated by the method of confidence intervals.

Confidence intervals

Suppose we observe the results of n trials with an unknown probability of success p.

The observed frequency of successes $\hat{p}=\frac{\#successes}{n}$

The Normal Curve Approximation says that for any fixed p and n large enough, there is a 99.99% chance that the observed frequency \hat{p} will differ from p by less than $4\sqrt{\frac{p(1-p)}{n}}$. It's easy to see that $\sqrt{p(1-p)} \leq \frac{1}{2}$, so $4\sqrt{\frac{p(1-p)}{n}} \leq \frac{2}{\sqrt{n}}$.

 $(\hat{p} - \frac{2}{\sqrt{n}}, \hat{p} - \frac{2}{\sqrt{n}})$

is called a 99.99% confidence interval.

Sampling without replacement

•Let's now think about drawing without replacement. The sample size has to be restricted to $n \leq N$.

 Then number of possible orderings of n elements out of N is:

 $(N)_n = N(N-1)(N-2) \dots (N-n+1).$

 \cdot (N)_n is called N order n

Sampling without replacement

Note that:

$$\binom{N}{n} = \frac{(N)_n}{n!}.$$

So:

Sampling without replacement

 The chance of getting a specific sample with g good elements followed by b bad ones is:

 $\frac{G}{N} \cdot \frac{G-1}{N-1} \dots \frac{G-g+1}{N-g+1} \cdot \frac{B}{N-g} \cdot \frac{B-1}{N-g-1} \dots \frac{B-b+1}{N-g-b+1} = \frac{(G)_{g}(B)_{b}}{(N)_{h}}$

•Since there are $\binom{n}{g}$ samples with g good and b bad elements all having the same probability, we obtain:

Sampling with and without replacement

For sampling without replacement:

P(g good and b bad) =
$$\binom{n}{g} \frac{(G)_g(B)_b}{(N)_h} = \frac{\binom{G}{g}\binom{B}{b}}{\binom{N}{n}}$$

•For sampling with replacement:

P(g good and b bad) =
$$\binom{n}{g} \frac{(G)^{g}(B)^{b}}{(N)^{n}}$$

Hypergeometric Distribution.

•The distribution of the number of good elements in a sample of

- size n
- without replacement
- From a population of
 - G good and
 - N-G = B bad elements

Is called the hypergeometric distribution with parameters (n,N,G).

Sampling with and without replacement

- •When N is large $(N)_n / N^n \rightarrow 1$.
- •When B is large (B)_b / $B^{b} \rightarrow 1$
- •When G is large (G)_g / $G^{g} \rightarrow 1$

So for fixed b,g and n as $B,G,N \rightarrow \infty$ the hypergeometric distribution can be approximated by a binomial(n,G/N).

Multinomial Distribution

Suppose each trial can result in m possible categories $c_1, c_2, ..., c_m$ with probabilities $p_1, p_2, ..., p_m$, where $p_1+p_2+...+p_m = 1$.

Suppose we make a sequence of n independent trials and let N_i denote the number of results in the ith category c_i .

Multinomial Distribution

Then for every m-tuple of non-negative integers $(n_1, n_2, ..., n_m)$ with $n_1+n_2+...+n_m = n$

$$P(N_{1}=n_{1},N_{2}=n_{2},...,N_{m}=n_{m}) = \frac{n!}{n_{1}!n_{2}!...n_{m}!}p_{1}^{n_{1}}p_{2}^{n_{2}}...p_{m}^{n_{m}}$$

Probability of any specific sequence

Number of possible sequences with the given elements

1,3,5 and 'even'

Suppose we roll a fair die 10 times and record the number of

Question: What's the probability of seeing

1,3,5 and 'even'

Using the multinomial distribution:

 $P(N_{1}=1,N_{3}=2,N_{5}=3,N_{even}=4) = \frac{10!}{1!2!3!4!} \left(\frac{1}{6}\right)^{1} \left(\frac{1}{6}\right)^{2} \left(\frac{1}{6}\right)^{3} \left(\frac{3}{6}\right)^{4}$

= 0.016878858

Hypergeometric Extension

 Consider also: this is the no. of ways to choose (g things from G) and (b bad things from B), out of all possible ways to choose n things from N.

•This way of counting lets us generalize to multiple subcategories easily. How many ways are there to choose g good from G and b bad from B and o ok's from O and p passable from P out of all possible ways to choose n things from N?