Lectures prepared by:
Elchanan Mossel
Yelena Shvets

Follows Jim Pitman’s book:
Probability
Section 2.5
Sampling with replacement

Suppose we have a population of size N with G good elements and B bad elements. We draw n times with replacement from this population.

The number g of good elements in the sample will have a binomial(n,p) distribution with $p = G/N$ and $1-p = B/N$.

$$P(g\text{ good and } b\text{ bad}) = \binom{n}{g} \frac{(G)^g (B)^b}{(N)^n}.$$
• If n is large, this will be well approximated by $N(np, \sqrt{np(1-p)})$.

• The proportion of good elements in the sample g/n will lie in the interval $p \pm \frac{1}{\sqrt{n}}$ with probability 95%.

• If the p is not known, it can be estimated by the method of confidence intervals.
Confidence intervals

Suppose we observe the results of n trials with an unknown probability of success p.

The observed frequency of successes $\hat{p} = \frac{\text{#successes}}{n}$.
The Normal Curve Approximation says that for any fixed p and n large enough, there is a 99.99% chance that the observed frequency \hat{p} will differ from p by less than $4\sqrt{p(1-p)/n}$. It's easy to see that $\sqrt{p(1-p)} \leq \frac{1}{2}$, so $4\sqrt{p(1-p)/n} \leq \frac{2}{\sqrt{n}}$.
is called a 99.99% confidence interval.
Sampling without replacement

• Let’s now think about drawing *without* replacement. The sample size has to be restricted to \(n \leq N \).

• Then number of possible orderings of \(n \) elements out of \(N \) is:

\[
(N)_n = N(N-1)(N-2) \ldots (N-n+1).
\]

• \((N)_n\) is called *N order n*
Sampling without replacement

Note that:

\[
\binom{N}{n} = \frac{(N)_n}{n!}.
\]

So:

\[
(N)_n = \binom{N}{n} n!.
\]
Sampling without replacement

• The chance of getting a specific sample with \(g \) good elements followed by \(b \) bad ones is:

\[
\frac{G}{N} \cdot \frac{G-1}{N-1} \cdot \frac{G-g+1}{N-g+1} \cdot \frac{B}{N-g} \cdot \frac{B-1}{N-g-1} \cdot \frac{B-b+1}{N-g-b+1} = \binom{G}{g} \binom{B}{b} / \binom{N}{n}.
\]

• Since there are \(\binom{n}{g} \) samples with \(g \) good and \(b \) bad elements all having the same probability, we obtain:
Sampling with and without replacement

• For sampling without replacement:

\[
P(\text{g good and b bad}) = \binom{n}{g} \frac{(G)^g (B)^b}{(N)^n} = \frac{\binom{G}{g} \binom{B}{b}}{\binom{N}{n}}.
\]

• For sampling with replacement:

\[
P(\text{g good and b bad}) = \binom{n}{g} \frac{(G)^g (B)^b}{(N)^n}.
\]
Hypergeometric Distribution.

• The distribution of the number of good elements in a sample of
 - size n
 - without replacement
• From a population of
 - G good and
 - N-G = B bad elements
Is called the hypergeometric distribution with parameters \((n,N,G)\).
Sampling with and without replacement

- When N is large, $(N)_n / N^n \to 1$.
- When B is large, $(B)_b / B^b \to 1$.
- When G is large, $(G)_g / G^g \to 1$.

So for fixed b,g and n as $B,G,N \to \infty$ the hypergeometric distribution can be approximated by a binomial($n, G/N$).
Multinomial Distribution

Suppose each trial can result in m possible categories c_1, c_2, \ldots, c_m with probabilities p_1, p_2, \ldots, p_m, where $p_1+p_2+\ldots+p_m = 1$.

Suppose we make a sequence of n independent trials and let N_i denote the number of results in the i^{th} category c_i.
Multinomial Distribution

Then for every \(m \)-tuple of non-negative integers \((n_1, n_2, \ldots, n_m) \) with \(n_1+n_2+\ldots+n_m = n \)

\[
P(N_1=n_1,N_2=n_2,\ldots,N_m=n_m) = \frac{n!}{n_1!n_2!\ldots n_m!} p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m}
\]

Probability of any specific sequence

Number of possible sequences with the given elements
1, 3, 5 and 'even'

Suppose we roll a fair die 10 times and record the number of

\[\text{ Roll: } 1, 2, 3, \text{ and even's.} \]

Question:

What's the probability of seeing

\[1, 2, 3, \text{ and 4 even numbers?} \]
Using the multinomial distribution:

\[
P(N_1=1,N_3=2,N_5=3,N_{\text{even}}=4) = \frac{10!}{1!2!3!4!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^3 \left(\frac{3}{6} \right)^4
\]

\[
= 0.016878858
\]
Hypergeometric Extension

• Consider also: this is the no. of ways to choose \(g \) things from \(G \) and \(b \) bad things from \(B \), out of all possible ways to choose \(n \) things from \(N \).

• This way of counting lets us generalize to multiple subcategories easily. How many ways are there to choose \(g \) good from \(G \) and \(b \) bad from \(B \) and \(o \) ok’s from \(O \) and \(p \) passable from \(P \) out of all possible ways to choose \(n \) things from \(N \)?