

Stat 134

FAII 2005 Berkeley

Lectures prepared by: Elchanan Mossel Yelena Shvets

Follows Jim Pitman's book:

Probability

Section 2.2

Recall: the Mean (µ) of a binomial(n,p) distribution is given by:

 $\mu = \#Trials \times P(success) = np$

- The Mean = Mode (most likely value).
- The Mean = "Center of gravity" of the distribution.

Standard Deviation

The Standard Deviation (SD) of a distribution, denoted σ measures the spread of the distribution.

<u>Def:</u> The Standard Deviation (SD) σ of the binomial(n,p) distribution is given by:

$$\sigma = \sqrt{np(1-p)}$$

Example 1:

- Let's compare Bin(100,1/4) to Bin(100,1/2).
- μ_1 = 25, μ_2 = 50
- $\sigma_1 = 4.33$, $\sigma_2 = 5$
- We expect Bin(100,1/4) to be less spread than Bin(100,1/2).
- Indeed, you are more likely to guess the value of Bin(100,1/4) distribution than of Bin(100,1/2) since:

For p=1/2: $P(50) \approx 0.079589237$;

For p=1/4: $P(25) \approx 0.092132$;

Example 2:

- Let's compare Bin(50,1/2) to Bin(100,1/2).
- μ_1 = 25, μ_2 = 50
- $\sigma_1 = 3.54$, $\sigma_2 = 5$
- We expect Bin(50,1/2) to be less spread than Bin(100,1/2).
- Indeed, you are more likely to guess the value of Bin(50,1/2) distribution than of Bin(100,1/2) since:

For n=100: $P(50) \approx 0.079589237$;

For n=50: $P(25) \approx 0.112556$;

μ, σ and the normal curve

- ·We will see today that the
- ·Mean (µ) and the
- •SD (σ) give a very good summary of the binom(n,p) distribution via
- The Normal Curve with parameters σ and μ .

binomial $(n, \frac{1}{2})$; n=50,100,250,500

Normal Curve

The Normal Distribution

Standard Normal Density Function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Corresponds to $\mu = 0$ and $\sigma = 1$

Standard Normal Cumulative Distribution Function:

$$\Phi(z) = \int_{-\infty}^{z} \varphi(x) dx$$

For the normal (μ,σ) distribution: $P(a,b) = \Phi((b-\mu)/\sigma) - \Phi((a-\mu)/\sigma);$

Standard Normal

Standard Normal

Standard Normal Cumulative Distribution Function:

For the normal (μ,σ) distribution: $P(a,b) = \Phi((b-\mu)/\sigma) - \Phi((a-\mu)/\sigma);$

In order to prove this, suffices to show:

$$P(-\infty,a) = \Phi((a-\mu)/\sigma);$$

$$\int_{-\infty}^{a} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\frac{a-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds$$

$$s = \frac{x - \mu}{\sigma}$$

$$ds = \frac{dx}{\sigma}$$

$$= \int_{-\infty}^{\frac{\alpha - \mu}{\sigma}} \phi(s) ds$$

$$x = a \Rightarrow s = \frac{a - \mu}{\sigma} = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Properties of Φ :

$$Φ(0)$$
 = 1/2;
 $Φ(-z)$ = 1 - Φ(z);
 $Φ(-\infty)$ = 0;
 $Φ(\infty)$ = 1.

 Φ does not have a closed form formula!

Normal Approximation of a binomial

For n independent trials with success probability p:

$$P(a \le \# \text{sucesses} \le b) \sim \Phi\left(\frac{b + 0.5 - \mu}{\sigma}\right) - \Phi\left(\frac{a + 0.5 - \mu}{\sigma}\right)$$

where:

$$\mu = np, \quad \sigma = \sqrt{np(1-p)}$$

binomial $(n, \frac{1}{2})$; n=50,100,250,500

Normal(μ , σ);

Normal Approximation of a binomial

For n independent trials with success probability p:

$$P(a \leq \# \text{sucesses} \leq b) \sim \Phi\left(\frac{b + 0.5 - \mu}{\sigma}\right) - \Phi\left(\frac{a - 0.5 - \mu}{\sigma}\right)$$

- The 0.5 correction is called the "continuity correction"
- •It is important when σ is small or when a and b are close.

Normal Approximation

Question: Find P(H>40) in 100 tosses.

Normal Approximation to bin(100,1/2).

When does the Normal Approximation fail?

Rule of Thumb

Normal works better:

- •The larger σ is.
- The closer p is to $\frac{1}{2}$.

Fluctuation in the number of successes.

From the normal approximation it follows that:

 $P(\mu-\sigma \text{ to } \mu+\sigma \text{ successes in n trials}) \approx 68\%$

 $P(\mu-2\sigma to \mu+2\sigma successes in n trials) \approx 95\%$

 $P(\mu-3\sigma \text{ to } \mu+3\sigma \text{ successes in n trials}) \approx 99.7\%$

 $P(\mu-4\sigma \text{ to } \mu+4\sigma \text{ successes in n trials}) \approx 99.99\%$

Typical size of fluctuation in the number of successes is:

$$\sigma = \sqrt{np(1-p)}$$

Typical size of fluctuation in the proportion of successes is:

$$\frac{\sigma}{n} = \sqrt{\frac{p(1-p)}{n}}$$

Square Root Law

Let n be a large number of independent trials with probability of success p on each.

The number of successes will, with high probability, lie in an interval, centered on the mean np, with a width a moderate multiple of \sqrt{n} .

The proportion of successes, will lie in a small interval centered on p, with the width a moderate multiple of $1/\sqrt{n}$.

Law of large numbers

Let n be a number of independent trials, with probability p of success on each.

For each ϵ > 0; $P(|\#successes/n - p| < \epsilon) \rightarrow 1, \text{ as } n \rightarrow \infty$

Confidence intervals

Suppose we observe the results of n trials with an unknown probability of success p.

The observed frequency of successes $\hat{p}=\frac{\#successes}{n}$.

The Normal Curve Approximation says that for any fixed p and n large enough, there is a 99.99% chance that the observed frequency \hat{p} will differ from p by

less than
$$4\sqrt{\frac{p(1-p)}{n}}$$
.

It's easy to see that
$$\sqrt{p(1-p)} \le \frac{1}{2}$$
, so $4\sqrt{\frac{p(1-p)}{n}} \le \frac{2}{\sqrt{n}}$.

$$(\hat{p} - \frac{2}{\sqrt{n}}, \hat{p} - \frac{2}{\sqrt{n}})$$

is called a 99.99% confidence interval.

binomial $(n, \frac{1}{2})$; n=50,100,250,500

Normal(μ , σ);

Bientôt je pus montrer quelques esquisses. Personne n'y comprit rien. Même ceux qui furent favorables à ma perception des vérités que je voulais ensuite graver dans le temple, me félicitèrent de les avoir découvertes au « microscope », quand je m'étais au contraire servi d'un télescope pour apercevoir des choses, très petites en effet, mais parce qu'elles étaient situées à une grande distance [...]. Là où je cherchais les grandes lois, on m'appelait fouilleur de détails. (TR, p.346)