

Introduction to probability

Stat 134

FAII 2005 Berkeley

Follows Jim Pitman's book: Probability Sections 1.6 Multiplication rule for 3 EventsThe Multiplication rule for two events says:P(AB) = P(A) P(B | A)The Multiplication rule extends to 3 Events:P(ABC) = P(AB)P(C | AB) = P(A) P(B | A) P(C | AB)

Multiplication rule for n Events Similarly, it extends to n events: $= P(A_1 \dots A_{n-1})P(A_n | A_1 \dots A_{n-1})$ $P(A_1 A_2 ... A_n)$ $= P(A_1) P(A_2|A_1) P(A_3|A_1|A_2) \dots P(A_n|A_1|\dots|A_{n-1})$ $\mathsf{P}(\mathsf{A}_{\mathsf{n}}| \mathsf{A}_{1} \dots \mathsf{A}_{\mathsf{n}-1})$ $P(A_2|A_1)$ $P(A_1)$

Shesh Besh Backgammon

We roll two dice. What is the chance that we will roll out Shesh Besh: for the *first* time on the n'th roll?

N=1 2 3 4 P = $\frac{1}{36}$ $\frac{35}{36}$ $\frac{1}{36}$ $\frac{35}{36}$ $\frac{1}{36}$ $\frac{5}{36}$ $\frac{5}{36$

The Geometric distribution

In Geom(p) distribution the probability of the outcome n for n=1,2,3... is given by: p (1-p)ⁿ⁻¹

Sanity check: is $\sum_{n=1}^{\infty} p(1-p)^{n-1} = 1$?

This is used often to model the wait time in situations where we are waiting for something (that has a certain chance of happening) to happen. 12/3/2006

The Birthday Problem If there are n students in the class, what is the chance that at least two of them have the same birthday?

P(at least 2 have same birthday) = 1 - P(No coinciding birthdays).

Let B_i be the birthday of student number i. The probability of no coinciding birthdays is: $P(B_2 \notin \{B_1\} \& B_3 \notin \{B_1, B_2\} \& ... \& B_n \notin \{B_1, ..., B_{n-1}\}).$

The Birthday Problem P(at least 2 have same birthday) = 1 - P(No coinciding birthdays) =

$$1 - (1 - \frac{1}{365})(1 - \frac{2}{365})...(1 - \frac{n-1}{365})$$

Q: How can we compute this for large n? A: Approximate!

The Birthday Problem
log(P(No coinciding birthdays))=

$$= \log((1 - \frac{1}{365})(1 - \frac{2}{365})...(1 - \frac{n-1}{365}))$$

$$= \log(1 - \frac{1}{365}) + \log(1 - \frac{2}{365}) + ... + \log(1 - \frac{n-1}{365}))$$

$$\approx -\frac{1}{365} - \frac{2}{365} - ... - \frac{n-1}{365}$$

$$= -\frac{1}{365}(\frac{1}{2}n(n-1))$$

The Birthday Problem

P(No coinciding birthdays) $\approx e^{\frac{n(n-1)}{2\times 365}}$

P(At least 2 have same birthday) $\underline{n(n-1)}$

$$\approx 1-e^{-\frac{n(n-1)}{2\times 365}}$$

Independence of 3 events Recall that A and B are independent if: P(B|A)=P(B|A^c) = P(B);

We say that <u>A,B and C are independent</u> if: $P(C|AB)=P(C|A^{c}B)=P(C|A^{c}B^{c})=P(C|AB^{c})=P(C)$ Independence of n events The events $\underline{A_1, \dots, A_n}$ are independent if

$$P(A_i | B_1,...B_{i-1}, B_{i+1},...B_n) = P(A_i)$$

for $B_i = A_i$ or A_i^c

This is equivalent to following multiplication rules: P(B₁ B₂ ... B_n) = P(B₁) P(B₂) ... P(B_n) for B_i = A_i or A_i^c

Independence of n events

<u>Question</u>: Consider the events A_1, \dots, A_n . Suppose that for all i and j the events A_i and A_j are independent.

Does that mean that A_1, \dots, A_n are all independent?

Pair-wise independence does not imply independence

I pick one of these people at random. If I tell you that it's a girl, there is an equal chance that she is a blond or a brunet; she has blue or brown eyes. Similarly for a boy.

However, if a tell you that I picked a blond and blue eyed person, it has to be a boy. So sex, eye color and hair color, for this group, are pair-wise independent, but not independent.

12/3/2006