Introduction to probability
Stat 134 FAIl 2005
Berkeley

Lectures prepared by:
Elchanan Mossel
Yelena Shvets

Follows Jim Pitman's
book:

Probability
Sections 1.6

12/3/2006




Multiplication rule for 3 Events

The Multiplication rule for two events says:
P(AB) =P(A)P(B | A)
The Multiplication rule extends to 3 Events:
P(ABC) = P(AB)P(C | AB)=P(A)P(B | A)P(C | AB)
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Multiplication rule for n Events

Similarly, it extends to n events:
P(Al Az An) - P(Al An—l)P(AnlAl An—l)

= P(A) P(A,]A;) P(As|A; A).. P(A,] A; .. A, )
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Shesh Besh Backgammon

We roll two dice. What is the chance that we will roll
out Shesh Besh: ¢ ¢ for the firsttime on the
n'th roll? o
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This is called a Geometric Distribution
with parameter p=1/36.

Geon(1/36)
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The Geometric distribution

In Geom(p) distribution the probability of
the outcome n for

n=1,2,3... is given by:

p (1-p)**

Sanity check: is 2,1~ p(1-p)+1 =12

This is used often to model the wait time in
situations where we are waiting for something (that
has a certain chance of happening) to happen.  2a0s




The Birthday Problem

If there are n students in the class, what is the
chance that at least two of them have the same
birthday?

P(at least 2 have same birthday) =
1 - P(No coinciding birthdays).

Let B, be the birthday of student number i.
The probability of no coinciding birthdays is:
P(B, O{B} & B; O{By,B,} & .. & B, O {By,....B,.1}).
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Use multiplication rule to find
P(B, 0 {B} & B, 0 {B.B,} & .. & B, 0 {B,,..B, }).

BZ:BI
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The Birthday Problem

P(at least 2 have same birthday) =
1 - P(No coinciding birthdays) =

1-(1-— -2

— ...(1
365 365) (

Q: How can we compute this for large n?
A: Approximatel




The Birthday Problem
log(P(No coinciding birthdays))=

- Jog((1 - ——y1 - -2y a-"L
=log((1 = 57 )1~ 52).(1 - 3-5)
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The Birthday Problem

_n(n-1)
P(No coinciding birthdays) = e #°°

P(At least 2 have same birthday)

_n(n-1)
~ 1 - g 2x365




Probability of no coinciding birthday as a function of
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Independence of 3 events

Recall that A and B are independent if:
P(BIA)=P(B|Ac) = P(B);

We say that A,B and C are independent if:
P(C|AB)= P(C|A<B) = P(C| A<B<) = P(C| AB<) =P(C)
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Independence of n events

The events A,,..,A, are independent if

P(A| | Bll"'Bi—llBi+ll"'Bn): P(A|)
for B, = A. or A¢

This is equivalent to following multiplication
rules:

P(Bl BZ Bn) = P(Bl) P(Bz) P(Bn)
for B;= A, or A¢
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Independence of n events

Question: Consider the events Ay,... A,.

Suppose that for all i and j the events A;and A; are
independent.

Does that mean that A,,..,A, are all independent?
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Pair-wise independence does not imply

independence
I pick one of these people at random. If I tell you that it's a
girl, there is an equal chance that she is a blond or a brunet;
she has blue or brown eyes. Similarly for a boy.
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However, if a tell you that I picked a blond and
blue eyed person, it has to be a boy.

So sex, eye color and hair color, for this group, are
pair-wise independent, but not independent.
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