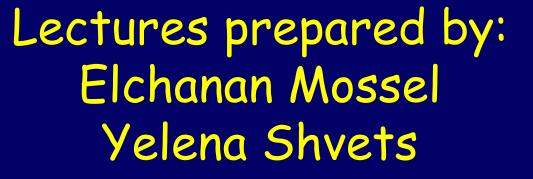


Introduction to probability

Stat 134

FAll 2006 Berkeley

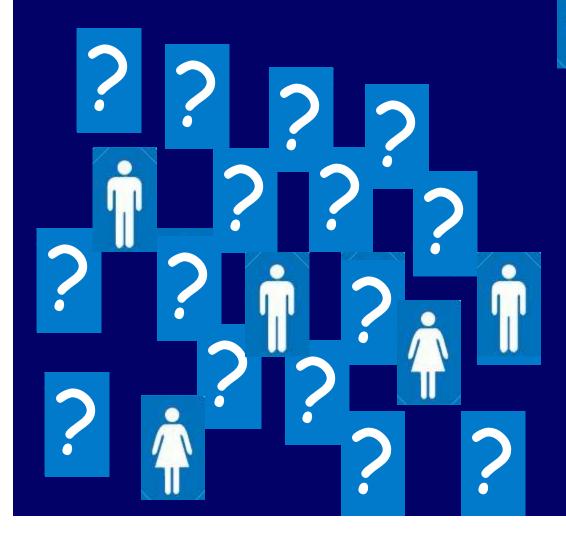


Follows Jim Pitman's book: Probability Sections 1.1-1.3

Probability as Proportion

There are 7

Suppose there are 20 people taking Stat 134.

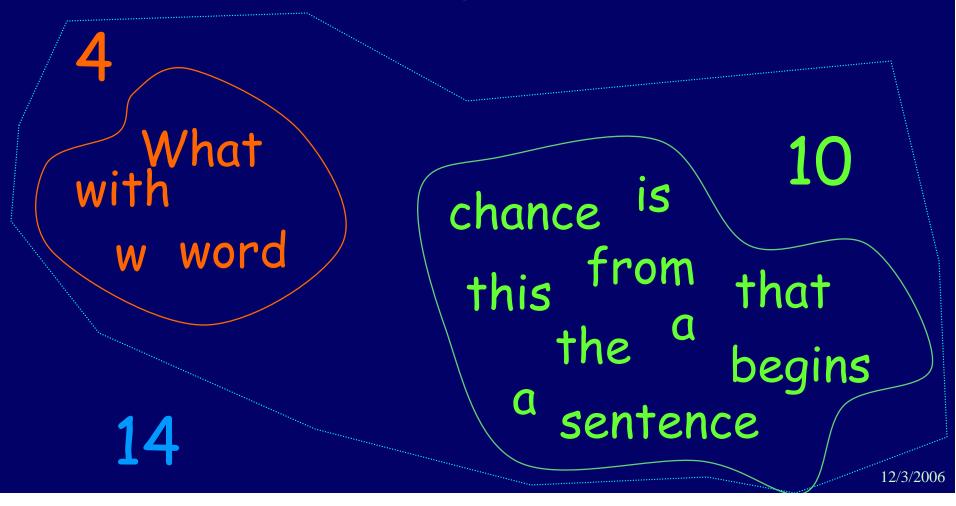


What is the chance that a person selected at random from the class is a woman?

& 13

Probability as Proportion

What is the chance that a word from this sentence begins with a w?



Space of ourcomes

The space of all possible outcomes will be denoted by Ω .

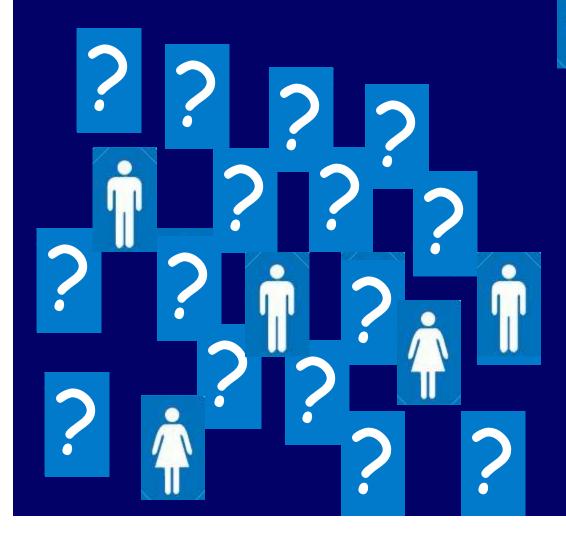
Probability as Proportion

If Ω is finite and each outcome is equally likely than the probability of an event A is:

Probability as Proportion

There are 7

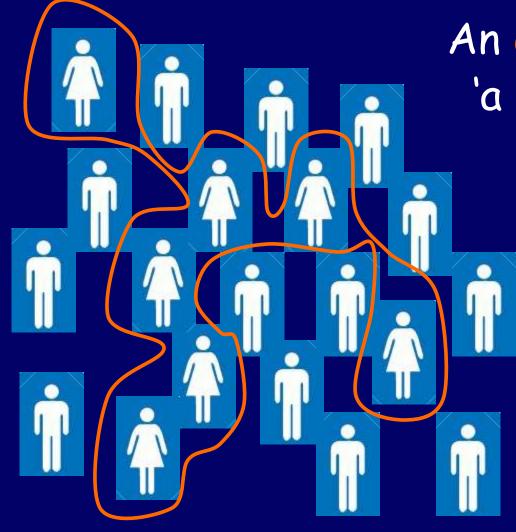
Suppose there are 20 people taking Stat 134.



What is the chance that a person selected at random from the class is a woman?

& 13

The state space Ω is the entire class. An outcome is a particular individual.



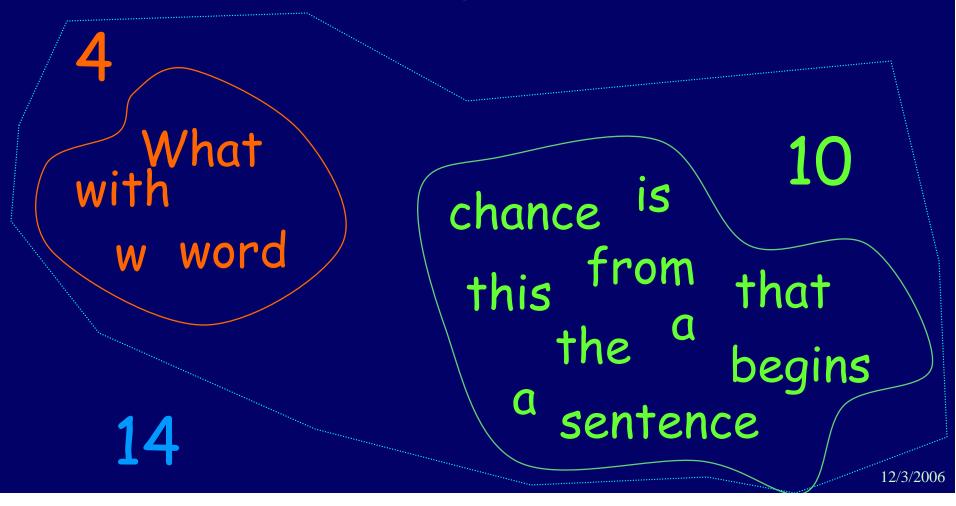
An event: 'a woman is picked' corresponds to

> A - the subset of all women in the class.

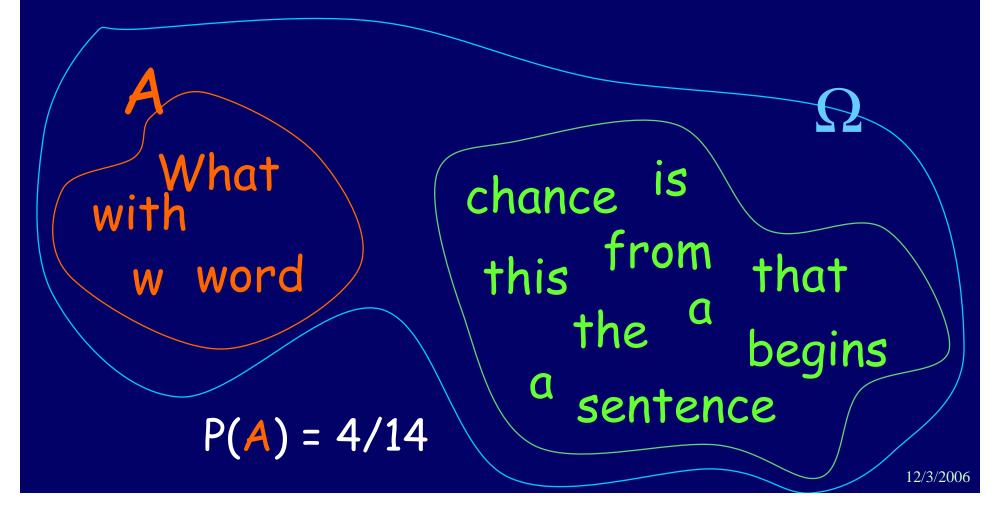
P(A) = 7/20

Probability as Proportion

What is the chance that a word from this sentence begins with a w?



The state space Ω is the (set of words of the) sentence. An outcome is a particular word. An event: 'a word starts with w' corresponds to set A of all the words starting with w.



First we need a Sample Space.

Is $\Omega = \{2,3,4,5,6,7,8,9,10,11,12\}$?

Problem: are events in Ω equally likely?

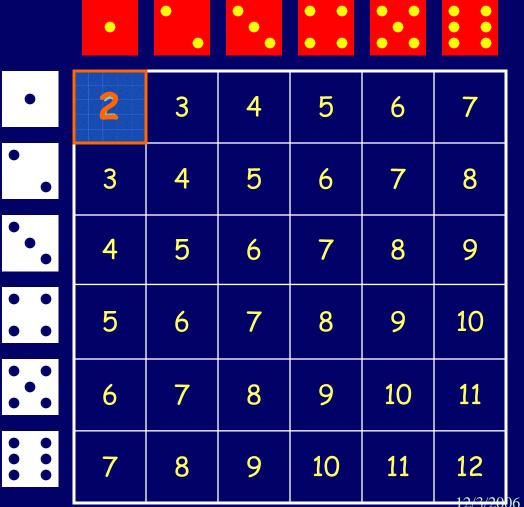
The correct sample space Ω :

• 2/3/2006

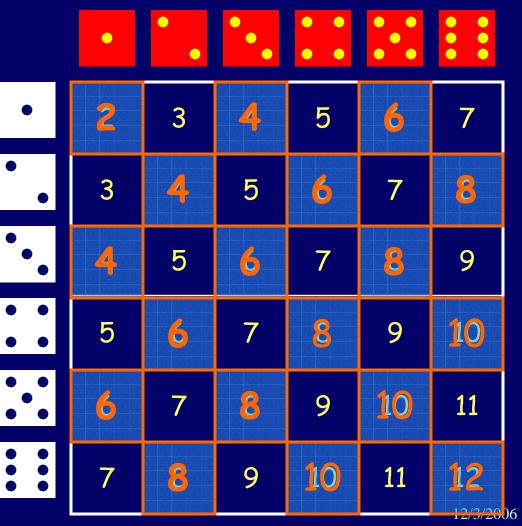
6/36 = 1/6

 \bullet • • • 7/ 2/3/2006

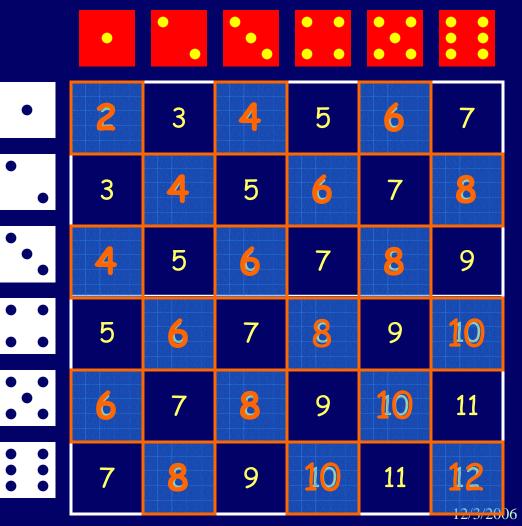
1/36



18/36 = 1/2



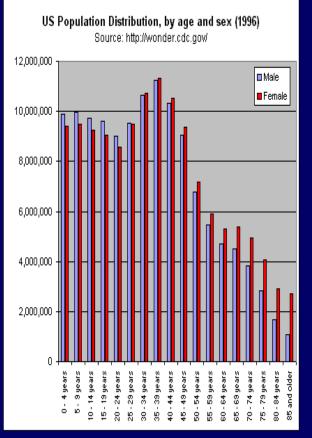
18/36 = 1/2



Probability interpretation: as frequency in population.

 In a <u>population</u> we interpret the probability of an event as the proportion of the event in the population.

• The <u>census</u> is based on the assumption that if we take a large enough <u>sample</u> then the observed frequency of an event at the sample should be close to the probability of the event in the population.



Probability Interpretation as frequency in repeated experiments

 Repeating the same experiment over and over again, the <u>observed frequency of</u> <u>experiments ending at an event</u> A should be close to P(A).

• The fact that the observed frequencies converge to P(A) is called the law of large numbers. We will prove this law later.

Events & Subsets event: a possible outcome subset: outcome space Ω

Venn diagram

P(Ω) =1

Events & Subsets

event: impossible outcome subset: empty set Ø

Venn diagram

P(∅) =0

Events & Subsets

event: outcome belongs to A - subset: A of Ω

Venn diagram

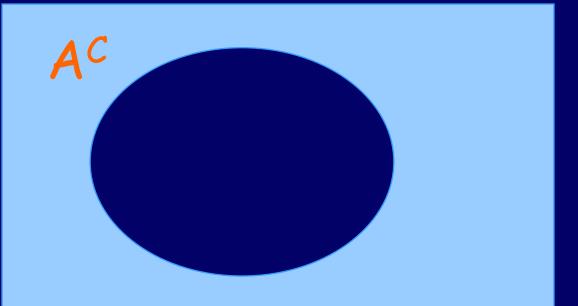
$0 \leq P(A) \leq 1$

Events & Subsets

event: outcome is not in A subset: complement of A in Ω

Venn diagram

 $P(A^{c}) = 1 - P(A)$

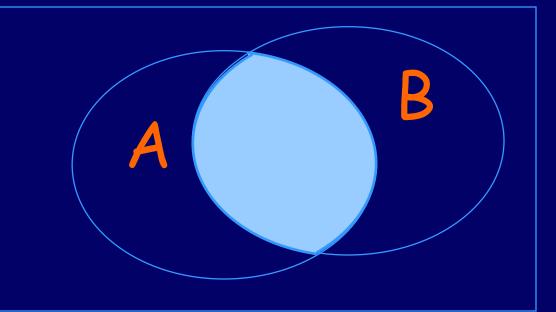


12/3/2006

Events & Subsets

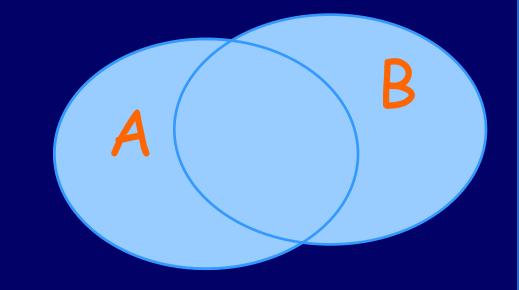
event: outcome belongs to A and B - subset: A \cap B of Ω

Venn diagram $P(A \cap B) \ge 0$ $P(A \cap B) \le P(A)$ $P(A \cap B) \le P(B)$



12/3/2006

Venn diagram $P(A \cup B) \ge P(A)$ $P(A \cup B) \ge P(B)$ $P(A \cup B) \ge P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$



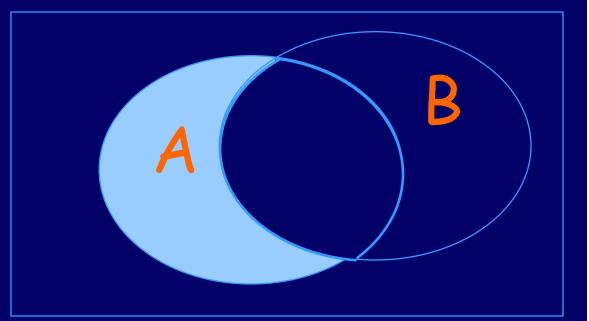
event: outcome belongs to A or B - subset: $A \cup B$ of Ω

Events & Subsets

Events & Subsets event: outcome belongs to A but not to B subset: A\B of Ω

Venn diagram

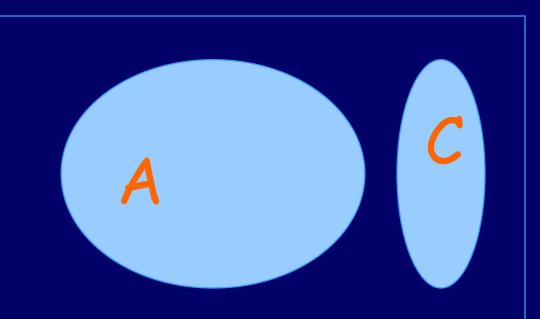
 $P(A \setminus B) =$ $P(A) - P(A \cap B)$



Events & Subsets event: outcome is in A or C with A and C mutually exclusive

subset: disjoint union of A and C

Venn diagram



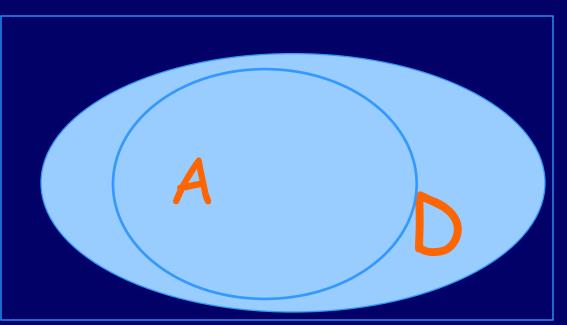
 $P(A \sqcup C) = P(A) + P(C)$ Note: $A \cap C = \emptyset$

Events & Subsets Event interpretation : if an outcome is in A then it must be in D

Subset interpretation: $A \subset D$

Venn diagram

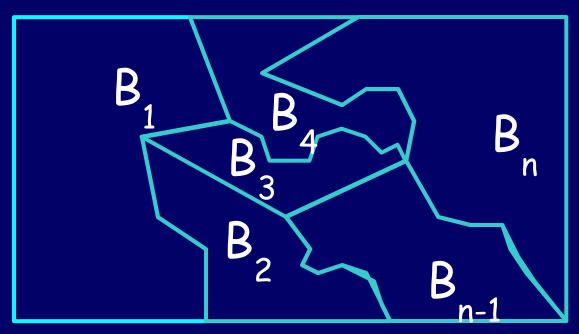
 $P(A) \leq P(D)$



Note: $A \cap D = A$

PartitionIf $B_1 \sqcup B_2 \sqcup ... \sqcup B_n = B$ We say that B is partitioned into n
mutually exclusive events

B₁, **B**₂, ..., **B**_n.

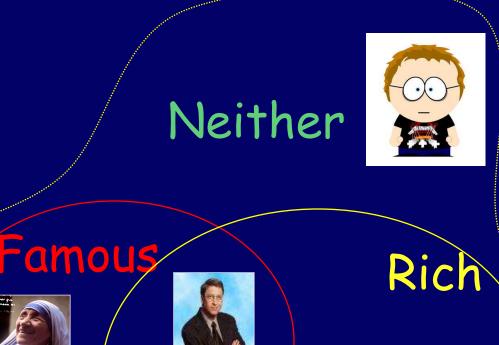


Rules of Probability Non-negative: $P(B) \geq 0$ for all $B \subseteq \Omega$. Additive: if $B = B_1 \sqcup B_2 \sqcup ... \sqcup B_n$ then $P(B) = P(B_1) + P(B_2) + ... + P(B_n).$ • Sums to 1: $P(\Omega) = 1$ A *distribution* over Ω is a function P on subsets of Ω which satisfies

these three rules.

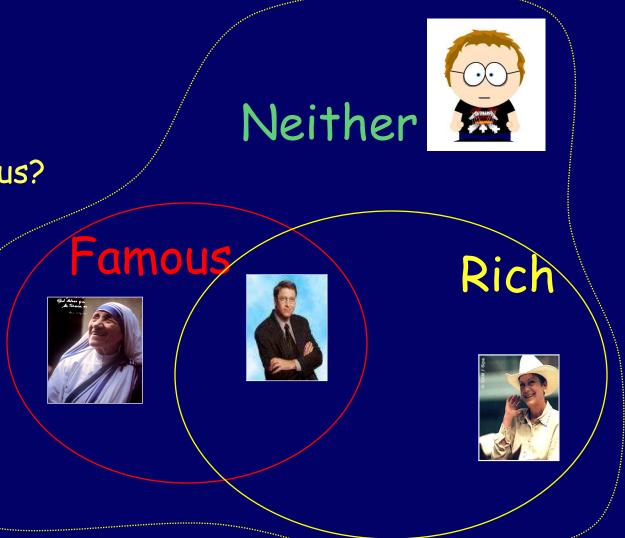
Example: Rich & Famous

In a certain town 10% of the inhabitants are rich, 5% are famous and 3% are rich and famous.

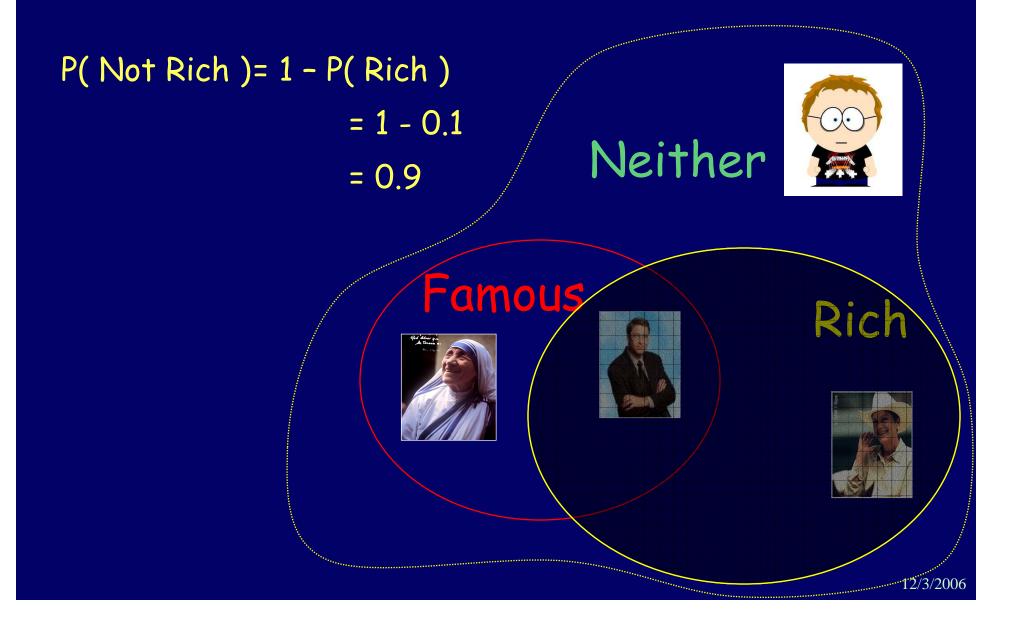


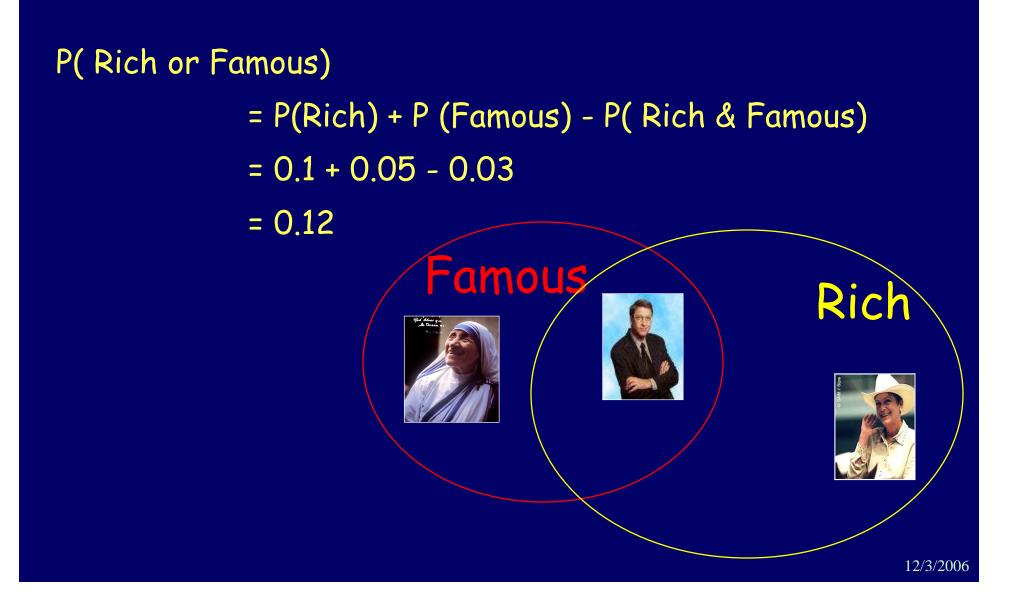
If a town's person is picked at random, what is the chance that he or she is

- Not Rich?
- Rich or Famous?
- Rich but not Famous?



R 10%, F 5%, R&F 3%

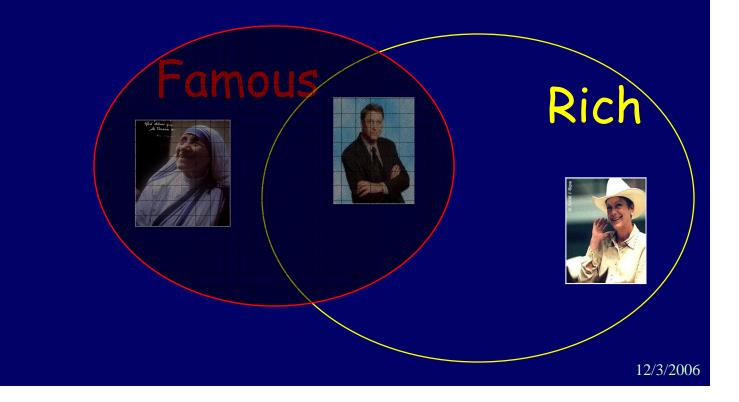




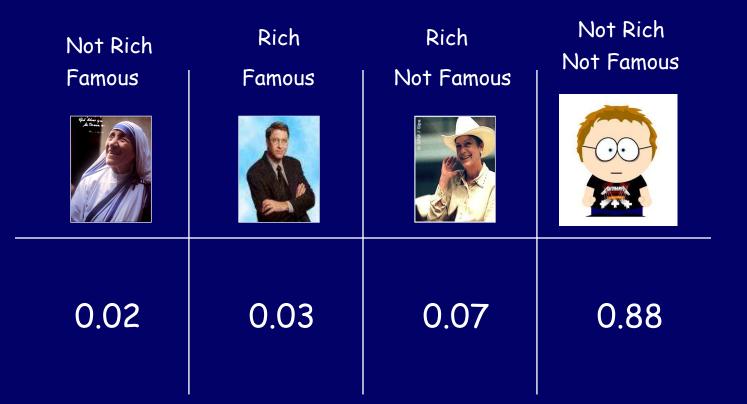
R 10%, F 5%, R&F 3%

P(Rich but not famous)

- = P(Rich) P(Rich & Famous)
- = 0.1-0.03
- = 0.07



Similar computations enable us to complete the following distribution table:

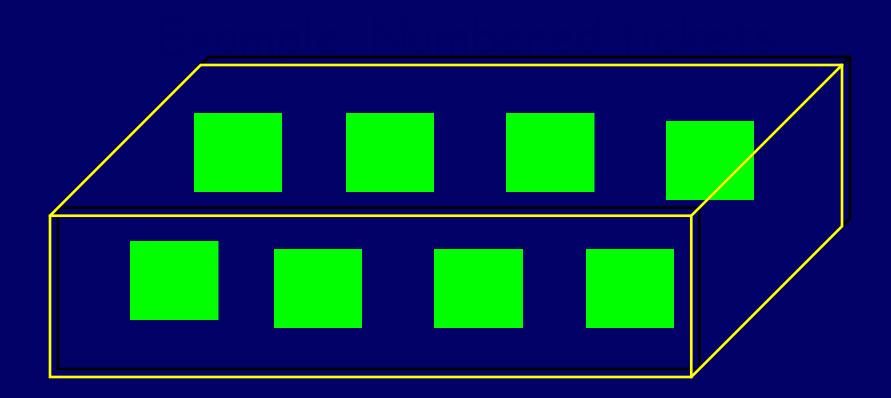


We can use this table to construct a histogram...

0.88

Histogram Is a graphical representation of a distribution. In a histogram the probability of an event is represented by its area.

> 0.02 0.03 0.07 0.07 F F F F F F R A R A R A R A R A R A R A R A R

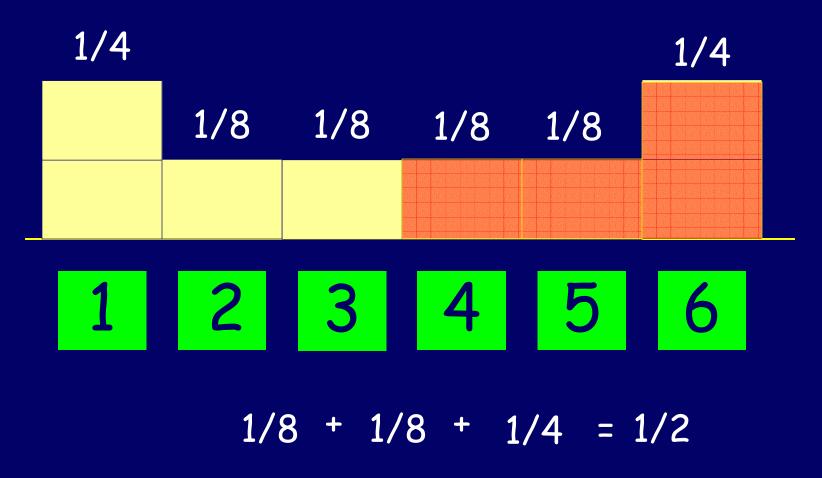


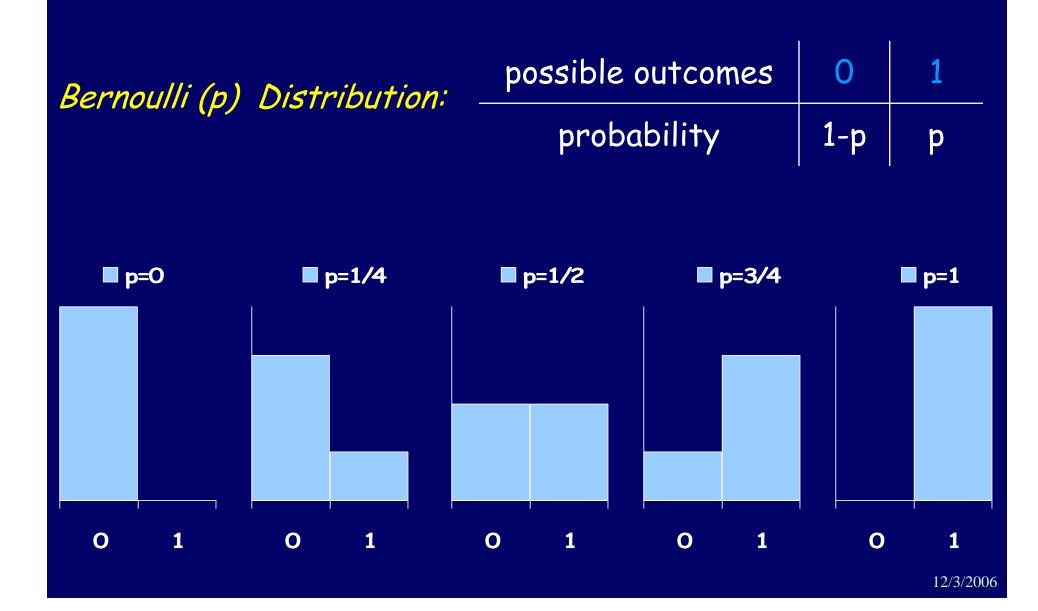
Draw one ticket uniformly at random. What is the chance that the number is greater than 3?

Here is the distribution table:

Now let's build a histogram:

Let's find the chance that the number on the ticket is greater than 3:

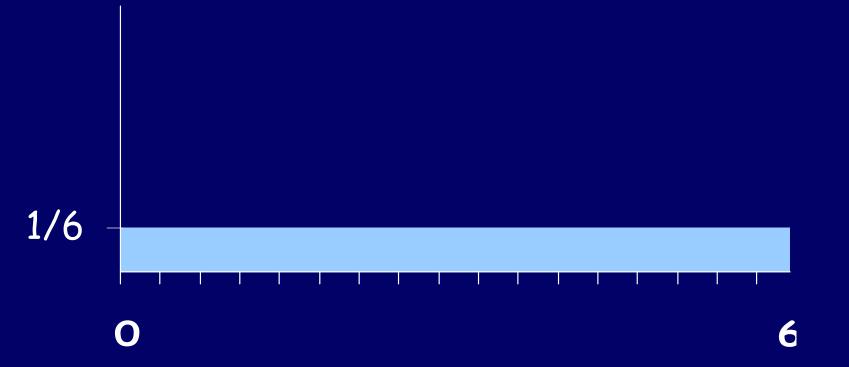




Uniform Distribution: on {0,1,2,,n-1}.	possible outcomes	0	1	2	••••	n-1
	probability	1/n	1/n	1/n		1/n

Uniform (a,b) Distribution:

for $a \le x < y \le b$, p(point in (x,y)) = (y-x)/(b-a)



Uniform (a,b) Distribution:

for (x,y)∈ B ⊂ (a,b)× (c,d) p(point in (x,y)) = Area(B)/((b-a)(d-c)

