Follows Jim Pitman’s book:
Probability
Sections 6.4
Do taller people make more money?

Question: How can this be measured?

National Longitudinal Survey of Youth 1997 (NLSY97)
Definition of Covariance

\[\text{Cov (X, Y)} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] \]

Alternative Formula

\[\text{Cov (X, Y)} = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \]

Variance of a Sum

\[\text{Var (X+Y)} = \text{Var (X)} + \text{Var (Y)} + 2 \text{Cov (X, Y)} \]

Claim: Covariance is Bilinear

\[\text{Cov(aX + b, cY + d)} = \mathbb{E}[(aX - \mathbb{E}(aX))(cY - \mathbb{E}(cY))] = \mathbb{E}[ac(X - \mu_X)(Y - \mu_Y)] = ac\text{Cov(X, Y)}. \]
What does the sign of covariance mean?

Look at $Y = aX + b$.

Then: $\text{Cov}(X,Y) = \text{Cov}(X,aX + b) = aVar(X)$.

If $a > 0$, above the average in X goes with above the ave in Y.
If $a < 0$, above the average in X goes with below the ave in Y.

$\text{Cov}(X,Y) = 0$ means that there is no linear trend which connects X and Y.
Meaning of the value of Covariance

Back to the National Survey of Youth study:
the actual covariance was 3028 where height is inches and the wages in dollars.

Question: Suppose we measured all the heights in centimeters, instead. There are 2.54 cm/inch?

Question: What will happen to the covariance?

Solution: So let H_I be height in inches and H_C be the height in centimeters, with W - the wages.

$$\text{Cov}(H_C, W) = \text{Cov}(2.54 \ H_I, W) = 2.54 \ \text{Cov} \ (H_I, W).$$

So the value depends on the units and is not very informative!
Covariance and Correlation

Define the **correlation coefficient**:

\[
\rho = \text{Corr}(X, Y) = E\left(\frac{X - E(X)}{\text{SD}(X)} \cdot \frac{Y - E(Y)}{\text{SD}(Y)} \right)
\]

Using the linearity of Expectation we get:

\[
\rho = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)}
\]

Notice that \(\rho(aX+b, cY+d) = \rho(X,Y) \). This new quantity is independent of the change in scale and it’s value is quite informative.
Covariance and Correlation

Properties of correlation:

\[X^* = \frac{(X - \mu_X)}{SD(X)} \quad \text{and} \quad Y^* = \frac{(Y - \mu_Y)}{SD(Y)} \]

\[E(X^*) = E(Y^*) = 0 \quad \text{and} \quad SD(X^*) = SD(Y^*) = 1 \]

\[\text{Corr}(X, Y) = Cov(X^*, Y^*) = E(X^*Y^*) \]
Covariance and Correlation

Claim: The correlation is always between -1 and $+1$

$$E(X^*^2) = E(Y^*^2) = 1$$

$$0 \leq E(X^* - Y^*)^2 = 1 + 1 - 2E(X^*Y^*)$$

$$0 \leq E(X^* + Y^*)^2 = 1 + 1 + 2E(X^*Y^*)$$

$$-1 \leq E(X^*Y^*) \leq 1$$

$$-1 \leq \text{Corr}(X, Y) \leq 1$$

$$\rho = 1 \text{ iff } Y = aX + b.$$
Correlation and Independence

X & Y are uncorrelated iff any of the following hold

\[\text{Cov}(X,Y) = 0, \]
\[\text{Corr}(X,Y) = 0 \]
\[E(XY) = E(X)E(Y). \]

In particular, if X and Y are independent they are uncorrelated.

Example: Let \(X \sim \mathcal{N}(0,1) \) and \(Y = X^2 \), then

\[\text{Cov}(XY) = E(XY) - E(X)E(Y) = E(X^3) = 0, \]

since the density is symmetric.
Roll a dye N times. Let X be #1's, Y be #2's.

Question: What is the correlation between X and Y?

Solution:

To compute the correlation directly from the multinomial distribution would be difficult. Let’s use a trick:

$$\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X,Y).$$

Since $X+Y$ is just the number of 1’s or 2’s, $X+Y \sim \text{Binom}(p_1+p_2, N)$.

$$\text{Var}(X+Y) = (p_1+p_2)(1 - (p_1+p_2))N.$$

And $X \sim \text{Binom}(p_1, N)$, $Y \sim \text{Binom}(p_2, N)$, so

$$\text{Var}(X) = p_1(1-p_1)N; \quad \text{Var}(Y) = p_2(1-p_2)N.$$
Correlations in the Multinomial Distribution

Hence

\[\text{Cov}(X,Y) = (\text{Var}(X+Y) - \text{Var}(X) - \text{Var}(Y))/2 \]

\[\text{Cov}(X,Y) = N((p_1+p_2)(1 - p_1 - p_2) - p_1(1-p_1) - p_2(1-p_2))/2 = -N \, p_1 \, p_2 \]

\[\rho = \frac{-Np_1p_2}{\sqrt{Np_1(1 - p_1)} \sqrt{Np_2(1 - p_2)}} \]

\[= \sqrt{\frac{p_1p_2}{(1 - p_1)(1 - p_2)}} \]

In our case \(p_1 = p_2 = 1/6 \), so \(\rho = 1/5 \). The formula holds for a general multinomial distribution.
Variance of the Sum of N Variables

\[\text{Var}(\sum_i X_i) = \sum_i \text{Var}(X_i) + 2 \sum_{j<i} \text{Cov}(X_i X_j) \]

Proof:

\[\text{Var}(\sum_i X_i) = E\left[\sum_i X_i - E(\sum_j X_i) \right]^2 \]

\[\left[\sum_i X_i - E(\sum_j X_i) \right]^2 = \left[\sum_i (X_i - \mu_i) \right]^2 \]

\[= \sum_i (X_i - \mu_i)^2 + 2 \sum_{j<i} (X_i - \mu_i)(X_j - \mu_j). \]

Now take expectations and we have the result.
Variance of the Sample Average

Let the population be a list of N numbers $x(1), \ldots, x(N)$. Then

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x(i) \quad \& \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x(i) - \bar{x})^2$$

are the population mean and population variance.

Let X_1, X_2, \ldots, X_n be a sample of size n drawn from this population. Then each X_k has the same distribution as the entire population and

$$E(X_k) = \bar{x} \quad \& \quad Var(X_k) = \sigma^2$$

Let $\bar{X}_n = \frac{(X_1 + X_2 + \ldots + X_n)}{n}$ be the sample average.
Variance of the Sample Average

When X_1, X_2, \ldots, X_n are drawn with replacement, they are independent and each X_k has variance σ^2. Then

$$\text{Var}(\bar{X}_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n} \quad \text{SD}(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

By linearity of expectation $E(\bar{X}_n) = \bar{x}$, both for a sample drawn with and without replacement.
Variance of the Sample Average

Question: What is the SD for sampling without replacement?

Solution: Let $S_n = X_1 + X_2 + \ldots + X_n$. Then $\bar{X}_n = S_n / n$.

$$\text{Var}(S_n) = \sum_i \text{Var}(X_i) + 2 \sum_{j<i} \text{Cov}(X_i, X_j)$$

By symmetry $\text{Cov}(X_i, X_j) = \text{Cov}(X_1, X_2)$, so

$$\text{Var}(S_n) = n \sigma^2 + n(n-1) \text{Cov}(X_1 X_2).$$

This formula hold for all $2 \cdot n \cdot N$.

When $n=N$ $\text{Var}(S_N)=0$ and $S_N / N = \bar{X}$ -- the sample is the entire population drawn out in random order. However, $\text{Cov}(X_1, X_2)$ should not depend on the ultimate sample size, so we use the formula with $n=N$ and obtain:

$$\text{Cov}(X_1 X_2) = -\sigma^2/(N-1).$$

And hence

$$\text{Var}(S_n) = \sigma^2 n(1 - (n-1)/(N-1)).$$

$$\text{Var}(\bar{X}_n) = \frac{\text{Var}(S_n)}{n^2}; \quad \text{SD}(\bar{X}_n) = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}$$