Introduction to probability

Stat 134 FALL 2005
Berkeley

Lectures prepared by:
Elchanan Mossel
Yelena Shvets

Follows Jim Pitman’s book:
Probability
Section 3.1
X is the sum of two dice.

X\left(\begin{array}{c}3\vline&5\end{array}\right)=6

X\left(\begin{array}{c}4\vline&1\end{array}\right)=5

X\left(\begin{array}{c}1\vline&4\end{array}\right)=5

X\left(\begin{array}{c}2\vline&3\end{array}\right)=5
Probability distribution for X.
Y is the number of aces in a poker hand.

$Y(\text{hand 1}) = 1$

$Y(\text{hand 2}) = 0$

$Y(\text{hand 3}) = 2$
probability distribution for Y.
Z is the number of heads in 10 coin tosses.

\[
\begin{align*}
Z(\text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5}}}}}}}}})} & = 5 \\
Z(\text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5}}}}}}}}}) & = 5 \\
Z(\text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5}}}}}}}}}) & = 7 \\
Z(\text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5} \text{\rotateleft{5}}}}}}}}}) & = 6
\end{align*}
\]
Probability distribution for Z.

$P(Z=z)$
Random Variables

A Random Variable is a symbol representing a quantity that is determined by an outcome in a probability space.
Random Variables

Note that for every random variable X,

$$\sum_x P(X=x) = 1,$$

where x ranges over all possible values that X can take.
Random Variables

Consider \(Z \), the number of heads in 10 coin tosses.

The range of \(Z \) is the set of all possible values that \(Z \) can take:

\[\{0,1,2,3,4,5,6,7,8,9,10\} \]
Random Variables

What is the domain of Z?

In other words, what determines the value that Z takes?

This is $\Omega = \text{the space of outcomes}$. In this case, an outcome is a particular sequence of coin tosses.

$Z(\text{sequence}) = 5$

Ω has $2^{10} = 1024$ elements.
Several Random Variables

Given two RV X and Y defined on the same outcome space Ω, we can consider a random pair (X,Y).

$$(X,Y)(\omega) = (X(\omega), Y(\omega)).$$

Then event $(X,Y) = (x,y)$ can be written as:

$$\{\omega : (X,Y)(\omega) = (x,y)\} = \{\omega : X(\omega) = x\} \cap \{\omega : Y(\omega) = y\}.$$
Example:

Let X be the sum of two dice and Y be the minimum.

<table>
<thead>
<tr>
<th>X,Y</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
<th>5,1</th>
<th>6,1</th>
<th>7,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,1</td>
<td>4,1</td>
<td>5,2</td>
<td>6,2</td>
<td>7,2</td>
<td>8,2</td>
<td></td>
</tr>
<tr>
<td>4,1</td>
<td>5,2</td>
<td>6,3</td>
<td>7,3</td>
<td>8,3</td>
<td>9,3</td>
<td></td>
</tr>
<tr>
<td>5,1</td>
<td>6,2</td>
<td>7,3</td>
<td>8,4</td>
<td>9,4</td>
<td>10,4</td>
<td></td>
</tr>
<tr>
<td>6,1</td>
<td>7,2</td>
<td>8,3</td>
<td>9,4</td>
<td>10,5</td>
<td>11,5</td>
<td></td>
</tr>
<tr>
<td>7,1</td>
<td>8,2</td>
<td>9,3</td>
<td>10,4</td>
<td>11,5</td>
<td>12,6</td>
<td></td>
</tr>
</tbody>
</table>
Joint Distributions

The distribution of \((X,Y)\) is called the joint distribution of \(X\) and \(Y\):

\[
P(x,y) = P(X=x, Y=y),
\]

satisfying

\[
P(x,y) \geq 0 \quad \text{and} \quad \sum_{\text{all } (x,y)} P(x,y) = 1.
\]
We can build a probability distribution table for the X and Y in the previous example:
<table>
<thead>
<tr>
<th>P(X,Y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2/36</td>
<td>2/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2/36</td>
<td>2/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2/36</td>
<td>2/36</td>
<td>2/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2/36</td>
<td>2/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2/36</td>
<td>2/36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2/36</td>
<td>1/36</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2/36</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Joint Distributions

Question:
Suppose you know the distribution of X and the distribution of Y separately, does this determine their joint distribution?
Several Random Variables

Example:

\(X \) is the result of the first draw from the box containing 1,2,3,4,5,6;

\&

\(Y \) - the result of the second draw after the first ticket has been replaced.
Joint Distribution

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

$P(X,Y)$
Several Random Variables

Example:

\(X\) is the result of the first draw from the box containing 1, 2, 3, 4, 5, 6;

\&

\(Z\) - the result of the second draw without replacing the first ticket.
Joint Distribution

<table>
<thead>
<tr>
<th>X</th>
<th>Z</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>2</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>3</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>4</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>5</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>6</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
</tr>
</tbody>
</table>

\[P(X, Z) \]
Joint Distribution

<table>
<thead>
<tr>
<th>X</th>
<th>Z</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>dist. X (row sums)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>P(X=1)=1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>P(X=2)=1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>P(X=3)=1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>P(X=4)=1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>P(X=5)=1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/30</td>
<td>P(X=6)=1/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dist. Z (column sums)</th>
<th>P(Z=1)=1/6</th>
<th>P(Z=2)=1/6</th>
<th>P(Z=3)=1/6</th>
<th>P(Z=4)=1/6</th>
<th>P(Z=5)=1/6</th>
<th>P(Z=6)=1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
<td>1/30</td>
</tr>
</tbody>
</table>
Joint Distributions

Question:
Suppose you know the distribution of X and the distribution of Y separately, does this determine their joint distribution?

Answer:
It does not ...
Marginal Probabilities

\[P(X=x) = \sum_y P(X=x, Y=y) \]

\[P(Y=y) = \sum_x P(X=x, Y=y) \]
Joint Distribution

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>dist. X (row sums)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=1) = \frac{1}{6}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=2) = \frac{1}{6}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=3) = \frac{1}{6}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=4) = \frac{1}{6}$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=5) = \frac{1}{6}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{1}{36}$</td>
<td>$P(X=6) = \frac{1}{6}$</td>
</tr>
</tbody>
</table>

| dist. Y (column sums) | $P(Z=1) = \frac{1}{6}$ | $P(Z=2) = \frac{1}{6}$ | $P(Z=3) = \frac{1}{6}$ | $P(Z=4) = \frac{1}{6}$ | $P(Z=5) = \frac{1}{6}$ | $P(Z=6) = \frac{1}{6}$ |
Random Variables with the Same Distribution

Random Variables X and Y have the same or identical distribution if they have the same range and for every value x in their range

$$P(X=x) = P(Y=x).$$
Recall:

X is the result of the first draw from the box $\{1,2,3,4,5,6\}$.

Y - the result of the second draw after the first ticket has been replaced;

Z - the result of the second draw without replacing the first ticket.
Draws from a box.

Observe that X, Y & Z all have the same distribution: uniform on \{1,2,3,4,5,6\}.

Yet they are not equal as variables:

If $X = 3$ then Z cannot equal 3.

(Y and Z are not even defined on the same space of outcomes...
Change of Variables Principle

If \(X \) and \(Y \) have the same distribution then so do \(g(X) \) and \(g(Y) \), for any function \(g \). For example:

\[X^2 \text{ has the same distribution as } Y^2. \]
Equality of Random Variables

Random variables X and Y defined over the same outcome space are equal, written $X = Y$, iff

$X = Y$ for every outcome in Ω.

In particular, $P(X = Y) = 1$.
Example: Equal RV's

Suppose we have a box with tiles each having the same area A.

Let X be the height of the tiles, Y be their width and $Z = A/X$. Then $Z = Y$ as random variables.
The probability that X and Y satisfy some condition is the sum of $P(x,y)$ over all pairs (x,y) which satisfy that condition.

$$P(X < Y) = \sum_{(x,y): x < y} P(x,y) = \sum_{\text{all } x} \sum_{y:y > x} P(x,y)$$

$$P(X = Y) = \sum_{(x,y): x = y} P(x,y) = \sum_{\text{all } x} P(x,x)$$
Distribution of any function of X and Y can be determined from the joint distribution:

$$P(f(X,Y) = z) = \sum_{(x,y): f(x,y) = z} P(x,y)$$
Functions of Random Variables

Let X,Y represent the results of two draws with replacement from a box with $(1, 2,\ldots,6)$.

Let $Z=\max(X,Y)$. We say $Z=f(X,Y)$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Conditional Distribution given an event.

For any event A, and any random variable Y, the collection of conditional probabilities

$$P(Y \in B \mid A) = \frac{P(Y \in B, A)}{P(A)}$$

defines the conditional distribution of Y given A.
Conditional Distribution Given A.

We can compute $P(Y \in B | X \in A)$ by partitioning B:

$$P(Y \in B | X \in A) = \frac{P(Y \in B, X \in A)}{\sum_y P(Y = y, X \in A)}.$$

Hence, if Y has a finite range this distribution is specified by $P(Y = y | A)$ for $y \in$ range of Y.

We can let $A : X = x$, for any random variable X defined over the same space of outcomes.
Conditional Distribution of Y Given X=x.

For every value of x in the range of X, as y varies over the range of Y the probabilities

\[P(Y=y|X=x) \]

define the **conditional distribution of Y given X=x.**
Rules of Conditional Probability

- Non-negative: \(P(Y \in B \mid A) \geq 0 \) for \(A, B \subseteq \Omega \).

- Additive: if \(B = B_1 \cup B_2 \cup \cdots \cup B_n \)
 \[
 P(Y \in B \mid A) = P(Y \in B_1 \mid A) + P(Y \in B_2 \mid A) + \ldots + P(Y \in B_n \mid A).
 \]

- Sums to 1: \(P(Y \not\in \Omega \mid A) = 1 \)
Multiplication Rule

If the marginal distribution of X and the conditional distribution of Y given $X=x$ are known, then we can find the joint distribution of X and Y:

$$P(X=x, Y=y) = P(X=x) P(Y=y|X=x).$$
Independence

Suppose that for any \(x \) and \(y \)

\[P(Y = y \mid X = x) = P(Y=y). \]

This means that knowing what value \(X \) takes does not influence the probabilities for \(Y \) so values of \(X \) and \(Y \) do not depend on each other.

This property defines independence.
Independence

Now suppose we know the marginal distribution of X and the conditional distribution of Y given $X=x$. Then the joint density is:

$$P(X=x, Y=y) = P(X=x) P(Y=y|X=x).$$

If X and Y are independent then

$$P(X=x, Y=y) = P(X=x) P(Y=y).$$

This is an equivalent definition of independence.
Independence

Suppose we know that for X and Y

$$P(X=x, Y=y) = P(X=x) P(Y=y).$$

Then

$$P(Y=y | X=x) = \frac{P(X=x, Y=y)}{P(X=x)}$$

$$= \frac{(P(X=x) P(Y=y))}{P(X=x)}$$

$$= P(Y=y).$$
This property does not always hold!

\[P(X=x, Y=y) \neq P(X=x) \cdot P(Y=y) \]

for general X and Y.
Dependence

Example: draws without replacement from a box of \{1,2,3,4,5,6\}.

\[
\begin{array}{ccccccc}
 & X & Z & 1 & 2 & 3 & 4 & 5 & 6 \\
 1 & 0 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 \\
 2 & 1/30 & 0 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 \\
 3 & 1/30 & 1/30 & 0 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 \\
 4 & 1/30 & 1/30 & 1/30 & 0 & 1/30 & 1/30 & 1/30 & 1/30 \\
 5 & 1/30 & 1/30 & 1/30 & 1/30 & 0 & 1/30 & 1/30 & 1/30 \\
 6 & 1/30 & 1/30 & 1/30 & 1/30 & 1/30 & 0 & 1/30 & 1/30 \\
\end{array}
\]

\[P(X=1, Y=1) = 0 \neq P(X=1) \cdot P(Y=1) = 1/36\]
Sequence of 10 coin tosses

Suppose we denote a head by 1 and a tail by 0. Then a sequence of 10 coin tosses can be represented as a sequence of zeros and ones:

$$\omega = 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1.$$
Ω has $2^{10} = 1024$ elements

0000000000	1000000000
0000000001	1000000001
0000000010	1000000010
0000000111	1000000111
0000001000	1000001000
0000001011	1000001011
0000001100	1000001100
0000111111	1111111111
Sequence of 10 coin tosses

We can define 10 new RV’s over \(\Omega \) in the following way:

Outcome: 0100011011;

\[X^1 = 0, X^2 = 1, X^3 = 0, \ldots, X^{10} = 1. \]

\(X^i \) represents the outcome of the \(i^{th} \) coin toss.
Sequence of 10 coin tosses

We can show that X_i's are pair-wise independent Bernoulli($\frac{1}{2}$) variables by using the first definition of independence.

$$P(X_i = 1 \mid X_j = 1) = P(X_i = 1 \mid X_j = 0) = P(X_i = 1) = \frac{1}{2};$$

In fact it's enough to look at ω^1 and ω^{10}, by symmetry.
\[P(X_{10}=1 \mid X^1=0) = \frac{1}{2} = P(X_{10}=1) \]

\[
\begin{align*}
0000000000 & \quad 10000000000 \\
0000000001 & \quad 10000000001 \\
0000000010 & \quad 10000000010 \\
0000000011 & \quad 10000000011 \\
0000000100 & \quad 1000000100 \\
0000000101 & \quad 1000000101 \\
0000000110 & \quad 1000000110 \\
\vdots & \quad \vdots \\
0111111111 & \quad 1111111111
\end{align*}
\]

\(\Omega \) has \(2^{10} = 1024 \) elements
Joint Distribution of Several Random Variables.

The distribution of \((X_1, X_2, \ldots, X_n)\) is called the joint distribution of \(X_1, X_2, \ldots, X_n\):

\[
P(x_1, x_2, \ldots, x_n) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n),
\]

satisfying

\[
P(x_1, x_2, \ldots, x_n) \geq 0 \quad \text{and} \quad \sum_{\text{all } (x_1, x_2, \ldots, x_n)} P(x_1, x_2, \ldots, x_n) = 1.
\]
The second definition of independence is easily generalized to the case of several RV’s.

We say X_1, X_2, \ldots, X_n are independent if

$$P(X_1=x_1, \ldots, X_n=x_n) = P(X_1=x_1) \cdot \ldots \cdot P(X_n=x_n).$$
Functions of Independent RV’s are Independent

If \(X_1, X_2, \ldots, X_n \) are independent then so are the random variables
\[Y_1 = f_1(X_1) , \ldots , Y_n = f_n(X_n). \]

For any functions \(f_1, \ldots, f_n \) defined on the range of \(X_1, \ldots, X_n \).
Example:

X_1, X_2, X_3, X_4, X_5 are the numbers on 5 dice, and $f(x) = 0$ if x is even and $f(x) = 1$ if x is odd. If we let $Y_i = f(X_i)$, then Y_1, Y_2, Y_3, Y_4, Y_5 are independent.

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_1 = 1$</td>
<td>$Y_2 = 0$</td>
<td>$Y_3 = 0$</td>
<td>$Y_4 = 1$</td>
<td>$Y_4 = 0$</td>
</tr>
</tbody>
</table>
Disjoint Blocks of Independent RV’s are Independent

Let’s consider the 5 dice again.

Suppose we group them into random vectors.

\((X_1, X_3)\) \((X_2, X_4)\) \((X_5)\)
Disjoint Blocks of Independent RV’s are Independent

\[(X_1, X_3) \quad (X_2, X_4) \quad (X_5)\]

These new random vectors are independent.
Disjoint Blocks of Independent RV’s are Independent

If X_1, \ldots, X_n are independent.

And B_1, \ldots, B_k are disjoint subsets of positive integers such that
$B_1 \cup B_2 \cup \ldots \cup B_k = \{1, 2, \ldots, n\}$.

Then the random vectors
$(X_i : i \in B_1), (X_i : i \in B_2), \ldots, (X_i : i \in B_k)$
are independent.
Disjoint Blocks of Independent RV's are Independent

\[(X_1, X_3) \quad (X_2, X_4) \quad (X_5)\]

In this example

\[B_1 = \{1,3\}; \quad B_2 = \{2,4\}; \quad B_3 = 5.\]
Functions of Disjoint Blocks of Independent RV’s are Independent

If X_1, X_2, \ldots, X_5 are independent then so are the random variables

$Y_1 = X_1 + X_3^2; \quad Y_2 = X_2 \cdot X_4; \quad Y_3 = X_5$
Disjoint Blocks of Independent RV’s are Independent

\((X_1, X_3)\) \hspace{1cm} \((X_2, X_4)\) \hspace{1cm} \((X_5)\)

\[Y_1 = X_1 + X_3^2 = 17\] \hspace{1cm} \[Y_1 = X_2 \times X_4 = 10\] \hspace{1cm} \[Y_3 = X_5 = 6\]
Suppose each trial can result in m possible categories \(c_1, c_2, \ldots, c_m \) with probabilities \(p_1, p_2, \ldots, p_m \), where \(p_1 + p_2 + \ldots + p_m = 1 \).

Suppose we make a sequence of \(n \) independent trials and let \(N_i \) denote the number of results in the \(i^{th} \) category \(c_i \).
Multinomial Distribution

Then for every m-tuple of non-negative integers \((n_1, n_2, \ldots, n_m)\) with \(n_1 + n_2 + \ldots + n_m = n\)

\[
P(N_1 = n_1, N_2 = n_2, \ldots, N_m = n_m) = \frac{n!}{n_1!n_2!\ldots n_m!} p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m}
\]
Suppose we roll a fair die 10 times and record the number of

1, 3, 5 and 'even'.

Question:
What’s the probability of seeing

1, 2, 3, and 4 even numbers?
Using the multinomial distribution:

\[P(N_1=1, N_3=2, N_5=3, N_{\text{even}}=4) = \frac{10!}{1!2!3!4!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^3 \left(\frac{3}{6} \right)^4 \]

\[= 0.016878858 \]