Introduction to probability

Stat 134 FALL 2005
Berkeley

Lectures prepared by:
Elchanan Mossel
Yelena Shvets

Follows Jim Pitman’s book:
Probability
Section 2.5
Sampling with replacement

• Suppose we have a population of size N with G good elements and B bad elements. We draw n times with replacement from this population.

• The number g of good elements in the sample will have a binomial(n,p) distribution with $p = G/N$.

$$P(g \text{ good and } b \text{ bad}) = \binom{n}{g} \frac{(G)^g(B)^b}{(N)^n}.$$
Sampling with replacement

• If n is large, this will be well approximated by $N(np, \sqrt{np(1-p)})$.

• The proportion of good elements in the sample g/n will lie in the interval $p \pm \frac{1}{\sqrt{n}}$ with probability 95%.

• If the p is not known, it can be estimated by the method of confidence intervals.
Sampling without replacement

• Let’s now think about drawing without replacement. The sample size has to be restricted to $n \cdot N$.

• Then number of possible orderings of n elements out of N is:

$$ (N)_n = N(N-1)(N-2) \ldots (N-n+1). $$

• $(N)_n$ is called N order n
Sampling without replacement

Note that:

\[
\binom{N}{n} = \frac{(N)_n}{n!}.
\]

So:

\[
(N)_n = \binom{N}{n} n!.
\]
Sampling without replacement

• The chance of getting a sample with g good elements followed by b bad ones is:

$$\frac{G}{N} \cdot \frac{G-1}{N-1} \cdot \frac{G-g+1}{N-g+1} \cdot \frac{B}{N-g} \cdot \frac{B-1}{N-g-1} \cdots \frac{B-b+1}{N-g-b+1} = \frac{(G)_g (B)_b}{(N)_n}.$$

• Since there are $\binom{n}{g}$ samples with g good and b bad elements all having the same probability, we obtain:
Sampling with and without replacement

• For sampling without replacement:

\[P(\text{g good and b bad}) = \binom{n}{g} \frac{(G)_g (B)_b}{(N)_n} = \frac{\binom{G}{g} \binom{B}{b}}{\binom{N}{n}}. \]

• For sampling with replacement:

\[P(\text{g good and b bad}) = \binom{n}{g} \frac{(G)^g (B)^b}{(N)^n}. \]
Hypergeometric Distribution.

- The distribution of the number of good elements in a sample of
 - size n
 - without replacement
- From a population of
 - G good and
 - $N-G$ bad elements

Is called the hypergeometric distribution with parameters (n,N,G).
Sampling with and without replacement

- When N is large, $(N)_n / N^n \approx 1$.
- When B is large, $(B)_b / B^b \approx 1$.
- When G is large, $(G)_g / G^g \approx 1$.

So for fixed b,g and n as $B,G,N \approx 1$ the hypergeometric distribution can be approximated by a binomial$(n,G/N)$.