Lectures prepared by:
Elchanan Mossel
Yelena Shvets

Follows Jim Pitman's book:
Probability
Sections 1.6
Multiplication rule for 3 Events

The Multiplication rule for two events says:
\[P(AB) = P(A) P(B \mid A) \]

The Multiplication rule extend to 3 Events:
\[P(ABC) = P(AB)P(C \mid AB) = P(A) P(B \mid A) P(C \mid AB) \]
Multiplication rule for n Events

Similarly, it extends to n events:

\[P(A_1 A_2 \ldots A_n) = P(A_1 \ldots A_{n-1})P(A_n | A_1 \ldots A_{n-1}) \]

\[= P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \ldots P(A_n | A_1 \ldots A_{n-1}) \]
We roll two dice. What is the chance that we will roll out Shesh Besh: \[
\begin{array}{c}
\text{for the first time on the n’th roll?}
\end{array}
\]

\[
P = \frac{1}{36} \frac{35}{36} \frac{1}{36} \frac{35}{36} \frac{35}{36} \frac{1}{36} \frac{35}{36} \frac{35}{36} \frac{35}{36} \frac{1}{36}
\]
This is a **Geometric Distribution** with parameter $p=\frac{1}{36}$.
The Geometric distribution

In $\text{Geom}(p)$ distribution the probability of the outcome n for $n=1,2,3...$ is given by:

$$p \ (1-p)^{n-1}$$

Sanity check: is $\sum_{n=1}^{1} p(1-p)^{n-1} = 1$?
The Birthday Problem

If there are \(n \) students in the class, what is the chance that at least two of them have the same birthday?

\[
P(\text{at least 2 have same birthday}) = 1 - P(\text{No coinciding birthdays}).
\]

Let \(B_i \) be the birthday of student number \(i \).

The probability of no coinciding birthdays is:

\[
P(B_2 \notin \{B_1\} \& B_3 \notin \{B_1,B_2\} \& \ldots \& B_n \notin \{B_1,\ldots,B_{n-1}\}).
\]
Use multiplication rule to find
\[P(B_2 \notin \{B_1\} \land B_3 \notin \{B_1, B_2\} \land \ldots \land B_n \notin \{B_1, \ldots, B_{n-1}\}) \].

\[
1 - \frac{1}{365} \rightarrow \quad B_2 \notin \{B_1\} \\
1 - \frac{2}{365} \rightarrow \quad B_3 \notin \{B_1, B_2\} \\
\ldots \\
1 - \frac{n-1}{365} \rightarrow \quad B_n \notin \{B_1, \ldots, B_{n-1}\} \]
The Birthday Problem

\[P(\text{at least 2 have same birthday}) = 1 - P(\text{No coinciding birthdays}) = \]
\[1 - \left(1 - \frac{1}{365}\right)\left(1 - \frac{2}{365}\right)\ldots\left(1 - \frac{n-1}{365}\right) \]

Q: How can we compute this for large n?

A: Approximate!
The Birthday Problem

\[\log(P(\text{No coinciding birthdays})) = \]

\[= \log((1 - \frac{1}{365})(1 - \frac{2}{365}) \ldots (1 - \frac{n-1}{365})) \]

\[= \log(1 - \frac{1}{365}) + \log(1 - \frac{2}{365}) + \ldots + \log(1 - \frac{n-1}{365}) \]

\[\approx - \frac{1}{365} - \frac{2}{365} - \ldots - \frac{n-1}{365} \]

\[= - \frac{1}{365} \left(\frac{1}{2} n(n - 1) \right) \]
The Birthday Problem

\[P(\text{No coinciding birthdays}) \approx e^{-\frac{n(n-1)}{2 \times 365}} \]

\[P(\text{At least 2 have same birthday}) \approx 1 - e^{-\frac{n(n-1)}{2 \times 365}} \]
Probability of no coinciding birthday as a function of n.
Independence of 3 events

Recall that A and B are independent if:

$$P(B|A) = P(B|A^c) = P(B);$$

We say that A, B and C are independent if:

$$P(C|AB) = P(C|A^cB) = P(C|A^cB^c) = P(C|AB^c) = P(C)$$
Independence of n events

The events A_1, \ldots, A_n are independent if

$$P(A_i \mid B_1, \ldots, B_{i-1}, B_{i+1}, \ldots, B_n) = P(A_i)$$
for $B_i = A_i$ or A_i^c

This is equivalent to following multiplication rules:

$$P(B_1 B_2 \ldots B_n) = P(B_1) P(B_2) \ldots P(B_n)$$
for $B_i = A_i$ or A_i^c
Independence of n events

Question: Consider the events A_1, \ldots, A_n.
Suppose that for all i and j the events A_i and A_j are independent.

Does that mean that A_1, \ldots, A_n are all independent?
Pair-wise independence does not imply independence

I pick one of these people at random. If I tell you that it’s a girl, there is an equal chance that she is a blond or a brunet; she has blue or brown eyes. Similarly for a boy.

However, if I tell you that I picked a blond and blue eyed person, it has to be a boy.

So sex, eye color and hair color, for this group, are pair-wise independent, but not independent.