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On the Impossibility of Reconstructing Ancestral
Data and Phylogenies

ELCHANAN MOSSEL

ABSTRACT

We prove that it is impossible to reconstruct ancestral data at the root of “deep” phylogenetic
trees with high mutation rates. Moreover, we prove that it is impossible to reconstruct the
topology of “deep” trees with high mutation rates from a number of characters smaller
than a low-degree polynomial in the number of leaves. Our impossibility results hold for
all reconstruction methods. The proofs apply tools from information theory and percolation
theory.
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1. INTRODUCTION

Trees are a useful tool in representing relationships between species. The reconstruction of these
trees, namedphylogenies, from genetic data is an important task of computational biology. A related

problem is that of reconstructingancestral data from genetic data at the leaves of a given tree with known
topology.

In this paper, we discuss both problems under the standard assumption that mutations evolve indepen-
dently and identically according to a Markov model. We focus on the case where the mutation rates along
edges are high.

In the informal discussion below, it is helpful to think of “high mutation” as a setting where the number
of species at timet is at mosteqt , whereq is a positive number defined in terms of the mutation rate
matrix Q. See bounds 1.1 and 1.2 below for exact formulations.

We derive a general bound on the mutual information between the data present at the leaves of a character
and the ancestral data for this character. This bound in turn implies the impossibility of reconstructing
ancestral data for high mutation rates.

Later, using the bound above, we derive a bound on the number of characters needed in order to
reconstruct phylogenies.

When the mutation rates are high, the second bound is polynomial in the number of species, thus
improving the well-known bound (for all mutation rates) which is logarithmic in the number of species.

The bounds derived in this paper give a positive answer to a question raised by David Penny and Mike
Steel in the annual New Zealand phylogenetics meeting of 2002 (thus winning the Penny ante). The bounds
we prove imply that it may be hard to test the hypothesis of common ancestry of all life on earth. More
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generally, it may be hard to determine “deep divergences” in the tree of life (see Sober and Steel [2002]
and Bound 1.2).

On first sight, it may seem surprising that qualitatively different bounds are obtained for high low
mutation rates.

In fact, there is an extensive body of work in statistical physics (formulated in a different language)
which indicates that the high low mutation rate phases behave quite differently.

For low mutation rates, the system is “ordered” and data at a nodev is correlated with functions of data
at nodes arbitrarily far from that node. In contrast, for high mutation rates, the system is “unordered,” and
the correlation between data at a nodev and a function of data at nodesF far from v decays exponentially
in the distance betweenv andF . See Bleheret al. (1995), Evanset al. (2000), Ioffe (1996), and Mossel
(2001) for some related results in statistical physics.

Mossel (2003) exploits this relationship to obtain both upper bounds and lower bounds for the CFN
(Cavender–Farris–Neyman) model (Cavender, 1978; Farris, 1973; Neyman, 1971). Subsequent to a previous
paper by this author (Mossel, 2003) and the results reported here, in a joint paper with M. Steel (Mossel
and Steel, 2003), this relationship is also exploited to derive a phase transition for random cluster models
on phylogenetic trees.

In this note, we omit a background survey of phylogeny. We refer the reader to Cavender (1978), Farris
(1973), Neyman (1971), Steel (1994), Erdöset al. (1999), and Swoffordet al. (1996) for background.

1.1. Basic definitions

We denote the root of a treeT by ρ and direct all edges away from the root. We letC be the set of
character states (such thatC = {A,C,G, T } or C = {20 amino acids}).

We assume that sites evolve identically and independently. We will often refer to sites as “characters.”
To each directed edgee of T , we associate a Markov matrixM(e) which encodes the mutations along
edgee (see Erdöset al. [1999] or Steel [1994] for a more formal description of the model).

Many of the standard models in biology satisfyM(e) = exp(t (e)Q), whereQ = (qi,j )i∈C,j∈C is a
mutation rates matrix andt (e) represents the length of the edgee. We will consider only such models
here.

Two examples are the Cavender–Farris–Neyman model,

Q =
(−1 1

1 −1

)
,

and Tajima and Nei’s “equal input” model

Q =




−(a + b + c) a b c

d −(b + c + d) b c

d a −(a + c + d) c

d a b −(a + b + d)


 .

See Swoffordet al. (1996) for various mutation ratesQ appearing in biology.
The mutation process is therefore defined by a mutation rate matrixQ, a rooted treeT = (V ,E, ρ), a

collection of edge lengthst : E → IR+, and a distributionπ of the value of the character at the root.
A characterσ : V → C is a labeling of the vertices ofT by C. We will write σv for the value ofσ at the

vertexv ∈ V . The distribution ofσρ is given byπ . If u is v’s parent, then the conditional distribution of
σv givenσu is given by the matrixM(e) = exp(t (e)Q), wheree = (u, v). Furthermore, the assumption is
that mutations events across different edges are independent and that different characters are independent
and identically distributed.

We denote the characters byσ 1, . . . , σ k. We denote the collection of leaves of the treeT by ∂T and
the values of characterσ i at the leaves byσ i

∂ . Similarly, we denote byσ i
ρ the value of the characterσ i at

the rootρ.
For a rooted treeT = (V ,E, ρ), its topology is the unrooted treeT = (V ,E).
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1.2. Information bound for a single character and reconstruction of ancestral data

It is helpful to measure “information” using the notions ofentropy, conditional entropy, and mutual
information (see Coveret al. [1991] for background). For a random variableX, the entropy operator is
defined by

H(X) = −
∑
x

P[X = x] log2 P[X = x].

The conditional entropy of X given Y is defined byH(X|Y ) = H(X, Y ) − H(Y), and themutual infor-
mation betweenX andY is defined by

I (X, Y ) = H(X) + H(Y) − H(X, Y ) = H(X) − H(X|Y ) = H(Y) − H(Y |X).

For a leafv, we let path(v) be the set of edges on the path connectingv to the rootρ, and t (v) =∑
e∈path(v) t (e).

Bound 1.1. Let σ be a character evolving according to a Markov model on a tree T , where M(e) =
exp(t (e)Q) for all e. Let

qj = mini �=j qi,j , q = ∑
j qj . (1)

Let σρ be the value of the character at the root of the tree, and σ∂ be the values of the character at the
leaves of the tree.

Then

H(σρ |σ∂) ≥ H(σρ)

(
1 −

∑
v∈∂T

e−qt (v)

)
, (2)

and therefore,

I (σρ, σ∂) ≤ H(σρ)
∑
v∈∂T

e−qt (v) ≤ log2 |C|
∑
v∈∂T

e−qt (v). (3)

Moreover, letting π be the prior distribution of the root character, and

# = sup
f

P[f (σ∂) = σρ] (4)

be the probability of reconstructing the value of σρ given σ∂ (the sup is taken over all functions and is
obtained for f = maximum likelihood), it holds that

# ≤ max
i

π [σρ = i] +
∑
v∈∂T

e−qt (v). (5)

A similar bound to (3) for general models is proved by Mossel (2001) in the discrete time setting. The
results of Mossel (2001) imply that for general mutation matricesQ, it is impossible to obtain bounds
of the form (3) withe−cqt (v) unlessc ≤ 1. Therefore, our results are sharp for general mutation models.
However, for the CFN model, a better bound is proved by Evanset al. (2000), where the terme−qt (v) is
replaced bye−2qt (v).

Note that it is trivial to achieve# = maxi π [σρ = i] in (5), by applying the constant functionf (σ∂) ≡ j ,
wherej maximizes maxi π [σρ = i] overi. Bound (5) measures how much better than trivial reconstruction
can be achieved.
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1.3. Bounds on reconstruction of phylogenetic trees

Bound 1.1 implies a bound on the number of characters needed for the reconstruction of a phylogenetic
tree from a collection of characters.

We let T (s) denote the topology of the treeT up to time s and T c(s) denote the topology of the
tree from times. In other words,T (s) contains all divergences up to times, while T c(s) contains all
divergences from times.

Bound 1.2. Consider the problem of phylogenetic reconstruction for an i.i.d. model on a rooted tree
on n leaves, where the prior distribution on trees is given by a measure µ. Suppose, furthermore, that the
characters evolve as in Bound 1.1 with mutation matrix Q; qj = mini �=j qi,j and q = ∑

j qj .

For all s, given T c(s) and k independent characters at the n leaves of the tree, (σ j
∂ )

k
j=1,

I (T (s); (σ j
∂ )

k
j=1|T c(s)) ≤ k

∑
v∈∂T

e−q(t (v)−s). (6)

Let #T (s) be the probability of reconstructing, given T c(s), the tree topology up to time s,

#T (s) = sup
f

P[f (σ j
∂ )

k
j=1) = Tree topology at time s], (7)

(the sup is taken over all functions, and is obtained for f = maximum likelihood). Similarly, let #T be
the probability of reconstructing T from (σ

j
∂ )

k
j=1.

Then

#T ≤ #T (s) ≤ max
T

µ[T (s) = T ] + k
∑
v∈∂T

e−q(t (v)−s). (8)

Assume, furthermore, that T (s) has a uniform distribution among all topologies on r leaves conditioned
on T c(s). Then

#T ≤ #T (s) ≤ max




e

2H(T (s)|T c(s))/2
,

2k
∑
v∈∂T

e−q(t (v)−s)

H(T (s)|T c(s))


 (9)

= max




e√
(2r − 5)!! ,

2k
∑
v∈∂T

e−q(t (v)−s)

log2(2r − 5)!!


 .

Note that Bound (8) is applicable whenk
∑

v∈∂T e−q(t (v)−s) << 1, while Bound (9) requires uniformity
and is applicable whenH(T (s)|T c(s)) is large compared tok

∑
v∈∂T e−q(t (v)−s).

Remark 1.1. In order to get a feeling for the asymptotic behavior of (8), fix s and assume that the
tree has n = eβt leaves, all at time t . Here we take the asymptotics where t → ∞ (and therefore n → ∞),
while s, q, and β are all constants.

Then ∑
v∈∂T

e−q(t (v)−s) = exp(sq)exp(−t (q − β)).

Therefore, if q > β, then by (8) if we want to reconstruct the topology up to time s with high probability,
i.e., #T (s) ≥ maxT µ[T (s) = T ] + n−o(1), then we need that

k ≥ exp(t (q − β − o(1))) = nq/β−1−o(1).

So the number of characters needed is polynomial in n.
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2. PROOFS

Proof of Bound 1.1. The proof utilizes the method of coupling (see, e.g., Aldous and Fill [2003] for
background on coupling for Markov chains) and arguments from the theory of percolation (see Mossel
[2001], Peres [1997], and Athreya and Ney [1972] for background).

The mutation rate from statei to statej is given by qi,j . Recalling (1), we may define the chain
equivalently as follows. Given the current statei,

I. Jump to statej with rateqj .
II. Jump to statej with rateqi,j − qj .

The point here is that Step I is performed independently of the statei.
For edgee = (u, v), let D(e) be the event that transition of type I occurs along the edgee. Note that the

eventsD(e) are independent for different edges and thatP[D(e)c] = exp(−qt (e)). Moreover, conditioned
on D(e), σv is independent ofσρ .

For a leafv, let D(v) be the event that transition of type I occurs along an edgee ∈ path(v). Then

P[D(v)c] =
∏

e∈path(v)
P[D(e)c] =

∏
e∈path(v)

e−qt (e) = e−qt (v).

Note that conditioned onD(v), σv is independent ofσρ . Finally, let D be the event thatD(v) holds for
all leavesv ∈ ∂T . Then

P[Dc] ≤
∑
v∈∂T

P[D(v)c] =
∑
v∈∂T

e−qt (v). (10)

Note that conditioned onD, σ∂ andσρ are independent.
We now use the following standard identities in information theory:

I (σρ, σ∂) = H(σρ) − H(σρ |σ∂), (11)

and

H(σρ |σ∂) =
∑
σ

P[σ∂ = σ ]H(σρ |σ∂ = σ). (12)

Moreover,

H(σρ |σ∂ = σ) ≥ P[D|σ∂ = σ ]H(σρ |σ∂ = σ,D) + P[Dc|σ∂ = σ ]H(σρ |σ∂ = σ,Dc). (13)

Recall that conditioned onD, σρ andσ∂ are independent. Therefore,H(σρ |σ∂ = σ,D) = H(σρ |D). Since
σρ andD are clearly independent, it follows thatH(σρ |D) = H(σρ).

It therefore follows from (13) that

H(σρ |σ∂ = σ) ≥ H(σρ)P[D|σ∂ = σ ]. (14)

Plugging (14) into (12) and using (10), we obtain that

H(σρ |σ∂) ≥ H(σρ)
∑
σ

P[σ∂ = σ ]P[D|σ∂ = σ ] = H(σρ)P[D] (15)

= H(σρ)(1 − P[Dc]) ≥ H(σρ)

(
1 −

∑
v∈∂T

e−qt (v)

)
,

so (2) follows. Combining (11) and (2), we see that (3) follows (recall thatH(σρ) ≤ log2 |C|).
To prove the bound on reconstruction (5), note that if we are not givenσ∂ (or any other information on

σρ), then the best reconstruction functionf satisfiesf ≡ j , wherej maximizedπ [σρ = i] over all i, and
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this function has success probability maxi π [σρ = i]. Now let f be any reconstruction procedure and note
that on the eventD, σρ is independent ofσ∂ and therefore

P[f (σ∂) = σρ] ≤ P[Dc] + P[D]P[f (σ∂) = σρ |D]
≤ P[Dc] + P[D] max

i
π [σρ = i] ≤ P[Dc] + max

i
π [σρ = i],

and we obtain (5) by (10) as needed.

Proof of Bound 1.2. We state below some basic properties ofI and Fano’s inequality which roughly
says that ifI (X, Y ) is small, then it is hard to reconstructX given Y (see, e.g., Coveret al. [1991] for
background).

Lemma 2.1. Let X, Y, and Z be random variables such that X and Z are independent given Y , then

I (X,Z) ≤ min{I (X, Y ), I (Y, Z)} (“Data Processing Lemma”), (16)

I ((X, Y ), Z) = I (Y, Z), (17)

I ((X,Z), Y ) ≤ I (X, Y ) + I (Z, Y ). (18)

Lemma 2.2 (Fano’s inequality). Let X and Y be random variables s.t. X has values in a set A of
size m, Y has values in a set B, and

# = #(X, Y ) = sup
f :B→A

P[f (Y ) = X] (19)

is the probability of reconstructing the value of X given Y (the sup is taken over all functions). Then

H(#) + (1 − #) log2(m − 1) ≥ H(X|Y ), (20)

where H(#) = −# log2# − (1 − #) log2(1 − #).

We start by proving Bound (6) forT (s). All the probabilities, entropies, and mutual informations in the
proof of (6) are conditioned onT c(s). Recall thatσ i

∂ = (σ i
v : v ∈ ∂T ). Let σ i

s = (σ i
v : d(v, ρ) = s) be the

i’th character at times. ClearlyT (s) and(σ i
∂ )

k
i=1 are independent given(σ i

s )
k
i=1.

In particular, by the data processing Lemma (16),

I
(
T (s), (σ i

∂ )
k
i=1

)
≤ I

(
(σ i

s )
k
i=1, (σ

i
∂ )

k
i=1

)
. (21)

Sinceσ i andσ i′ are independent wheni �= i′,

I
(
(σ i

s )
k
i=1, (σ

i
∂ )

k
i=1

)
=

k∑
i=1

I (σ i
s , σ

i
∂ ). (22)

For v at times, let ∂(v) denote all the vertices at∂T that are descendants ofv. Let Ls be the collection
of species at times. Note that(σ i

∂(v) : v ∈ Ls) are conditionally independent givenσ i
s . Therefore, by (18),

I (σ i
s , σ

i
∂ ) ≤

∑
v∈Ls

I (σ i
s , σ

i
∂(v)). (23)

Finally, note that(σ i
w : w ∈ Ls,w �= v) are independent ofσ i

∂(v) given σ i
v , and therefore for allv ∈ Ls ,

I (σ i
s , σ

i
∂(v)) = I (σ i

v, σ
i
∂(v)). (24)
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Combining (21) with (22), (23), and (24), we obtain

I
(
T (s), (σ i

∂ )
k
i=1

)
≤

k∑
i=1

∑
v∈Ls

I (σ i
v, σ

i
∂(v)).

By Bound (1.1),I (σ i
v, σ

i
∂(v)) ≤ 4(v), where

4(v) =
∑

w∈∂(v)
e−q(t (w)−s).

Therefore,

I
(
T (s), (σ i

∂ )
k
i=1

)
≤ k4,

where

4 =
∑
v∈∂T

e−q(t (v)−s),

and we obtain (6) as needed.
We now prove (8) and (9). First, note that reconstruction probabilities increase given additional infor-

mation. Therefore,#T is bounded by the probability of reconstructingT (s) givenT c(S). In other words,
#T ≤ #T (s) for all s.

In order to obtain Bound (8), we repeat the proof of Bound 1.1. For characteri, we say that the event
Di occurs if for allv ∈ ∂T , there exists a timet ≥ s at which transition of type I. (of Bound 1.1) occurs
along path(v). By the proof of Bound 1.1, it follows thatP[Dc

i ] ≤ 4, and thereforeP[(∩k
i=1Di)

c] ≤
k4. Conditioned on∩k

i=1Di , (σ i
s )

k
i=1 and (σ i

∂ )
k
i=1 are independent, and therefore,T (s) and (σ i

∂ )
k
i=1 are

independent. As in Bound 1.1, we conclude that

#T (s) ≤ P[(∩k
i=1Di)

c] + P[(∩k
i=1Di)] max

T
µ[T (s) = T ] ≤ k

∑
v∈∂T

e−q(t (v)−s) + max
T

µ[T (s) = T ],

and (8) follows.
From (6) we conclude that

H
(
T (s) | (σ i

∂ )
k
i=1, T

c(S)
)

= H(T (s)|T c(S)) − I
(
T (s), (σ i

∂ )
k
i=1|T c(S)

)
≥ H(T (s)|T c(S)) − k4.

From now on we assume thatT (s) has a uniform distribution givenT c(s). Again, all probabilities, entropies,
etc. are conditioned onT c(s).

By Lemma 2.2, we conclude that the probability# = #
(
T (s), (σ i

∂ )
k
i=1

)
of reconstructingT (s) given

(σ i
∂ )

k
i=1 satisfies

H(#) + (1 − #)H(T (s)) ≥ H(T (s)) − k4. (25)

The rest of the proof consists of calculations showing how to derive (9) from (25).
First, note that we can rewrite (25) as

H(#) + k4 ≥ #H(T (s)),

from which we conclude that

# ≤ max

{
2H(#)

H(T (s))
,

24

H(T (s))

}
. (26)
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Note that−(1− x) log(1− x) ≤ x for x ∈ [0,1], and therefore,H(#) ≤ −# log2#+# log2(e). Thus,
if # ≤ 2H(#)/H(T (s)), then 0.5#H(T (s)) ≤ −# log2#+# log2(e), or # ≤ e/2H(T (s))/2. So by (26),
we obtain

# ≤ max

{
e

2H(T (s))/2
,

24

H(T (s))

}
. (27)

Since the number of binary trees onr labeled leaves is(2r − 5)!!, we obtain (9) as needed.
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