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On the Impossibility of Reconstructing Ancestral
Data and Phylogenies

ELCHANAN MOSSEL

ABSTRACT

Weprovethat it isimpossible to reconstruct ancestral data at theroot of “ deep” phylogenetic
trees with high mutation rates. Moreover, we prove that it is impossible to reconstruct the
topology of “deep” trees with high mutation rates from a number of characters smaller
than a low-degree polynomial in the number of leaves. Our impossibility results hold for
all reconstruction methods. The proofs apply tools from information theory and percolation
theory.
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1. INTRODUCTION

REES ARE A USEFUL TOOL in representing relationships between species. The reconstruction of these

trees, nameghylogenies, from genetic data is an important task of computational biology. A related
problem is that of reconstructirancestral data from genetic data at the leaves of a given tree with known
topology.

In this paper, we discuss both problems under the standard assumption that mutations evolve indepen-
dently and identically according to a Markov model. We focus on the case where the mutation rates along
edges are high.

In the informal discussion below, it is helpful to think of “high mutation” as a setting where the number
of species at time is at moste?’, whereq is a positive number defined in terms of the mutation rate
matrix Q. See bounds 1.1 and 1.2 below for exact formulations.

We derive a general bound on the mutual information between the data present at the leaves of a character
and the ancestral data for this character. This bound in turn implies the impossibility of reconstructing
ancestral data for high mutation rates.

Later, using the bound above, we derive a bound on the number of characters needed in order to
reconstruct phylogenies.

When the mutation rates are high, the second bound is polynomial in the number of species, thus
improving the well-known bound (for all mutation rates) which is logarithmic in the number of species.

The bounds derived in this paper give a positive answer to a question raised by David Penny and Mike
Steel in the annual New Zealand phylogenetics meeting of 2002 (thus winning the Penny ante). The bounds
we prove imply that it may be hard to test the hypothesis of common ancestry of all life on earth. More
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generally, it may be hard to determine “deep divergences” in the tree of life (see Sober and Steel [2002]
and Bound 1.2).

On first sight, it may seem surprising that qualitatively different bounds are obtained for high low
mutation rates.

In fact, there is an extensive body of work in statistical physics (formulated in a different language)
which indicates that the high low mutation rate phases behave quite differently.

For low mutation rates, the system is “ordered” and data at a nasleorrelated with functions of data
at nodes arbitrarily far from that node. In contrast, for high mutation rates, the system is “unordered,” and
the correlation between data at a nadand a function of data at nodésfar from v decays exponentially
in the distance between and F. See Bleheet al. (1995), Evanst al. (2000), loffe (1996), and Mossel
(2001) for some related results in statistical physics.

Mossel (2003) exploits this relationship to obtain both upper bounds and lower bounds for the CFN
(Cavender—Farris—Neyman) model (Cavender, 1978; Farris, 1973; Neyman, 1971). Subsequent to a previous
paper by this author (Mossel, 2003) and the results reported here, in a joint paper with M. Steel (Mossel
and Steel, 2003), this relationship is also exploited to derive a phase transition for random cluster models
on phylogenetic trees.

In this note, we omit a background survey of phylogeny. We refer the reader to Cavender (1978), Farris
(1973), Neyman (1971), Steel (1994), Erdédsal. (1999), and Swoffordt al. (1996) for background.

1.1. Basic definitions

We denote the root of a treg by p and direct all edges away from the root. We (ebe the set of
character states (such that= {A, C, G, T} or C = {20 amino acidy.

We assume that sites evolve identically and independently. We will often refer to sites as “characters.”
To each directed edge of T, we associate a Markov matrid (e¢) which encodes the mutations along
edgee (see Erdost al. [1999] or Steel [1994] for a more formal description of the model).

Many of the standard models in biology satisty(e) = exp(t(e) Q), where Q = (gi,j)icc,jec IS @
mutation rates matrix and(e) represents the length of the edgeWe will consider only such models
here.

Two examples are the Cavender—Farris—Neyman model,

-1 1

and Tajima and Nei’s “equal input” model

—(a+b+c) a b c

. d —(b+c+d) b c

Q= d a —(a+c+d) c
d a b —(a+b+d)

See Swoffordet al. (1996) for various mutation rate@ appearing in biology.

The mutation process is therefore defined by a mutation rate m@irx rooted treel’ = (V, E, p), a
collection of edge lengths: E — R, and a distributionz of the value of the character at the root.

A charactelo : V — C is a labeling of the vertices df by C. We will write o, for the value ofo at the
vertexv € V. The distribution ofo, is given byx. If u is v’s parent, then the conditional distribution of
oy giveno, is given by the matrixM (e) = exp(t(e) Q), wheree = (u, v). Furthermore, the assumption is
that mutations events across different edges are independent and that different characters are independent
and identically distributed.

We denote the characters by, ..., o. We denote the collection of leaves of the tfBedy 97 and
the values of character’ at the leaves by;. Similarly, we denote by the value of the character’ at
the rootp.

For a rooted tred” = (V, E, p), its topology is the unrooted tre@ = (V, E).



PLEASE SUPPLY RECTO RUNNINGHEAD 671

1.2. Information bound for a single character and reconstruction of ancestral data

It is helpful to measure “information” using the notions @iftropy, conditional entropy, and mutual
information (see Covert al. [1991] for background). For a random variabte the entropy operator is
defined by

H(X) = — ZP[X = x]log, P[X = x].

The conditional entropy of X givenY is defined byH (X|Y) = H(X,Y) — H(Y), and themutual infor-
mation betweenX andY is defined by

I(X,Y)=HX)+HY)-HX,Y)=HX)— HX|Y)=H®Y) - HY|X).

For a leafv, we letpat h(v) be the set of edges on the path connectintp the rootp, and¢(v) =
Zeepat h(v) 1(e).

Bound 1.1. Let o be a character evolving according to a Markov model on a tree T', where M (e) =
exp(t(e) Q) for all e. Let

gj =miNizjqij, q=2;4; (1)

Let o, be the value of the character at the root of the tree, and o be the values of the character at the
leaves of the tree.

Then
H(oyloy) = H(op) (1— > e‘”(”)) , @)
vedT
and therefore,
I(p, 09) < Hlop) Y e "W <logyC| Y e, 3)
vedT vedT

Moreover, letting 7 be the prior distribution of the root character, and

A= S?Dp[f(oa) =0,] (4)

be the probability of reconstructing the value of o, given o, (the supis taken over all functions and is
obtained for f = maximum likelihood), it holds that

A <maxrlo, =i+ Z e, (5)
' vedT

A similar bound to (3) for general models is proved by Mossel (2001) in the discrete time setting. The
results of Mossel (2001) imply that for general mutation matriggst is impossible to obtain bounds
of the form (3) withe=<?'™ unlessc < 1. Therefore, our results are sharp for general mutation models.
However, for the CFN model, a better bound is proved by Eara. (2000), where the terra—4'®) is
replaced bye=24'@),

Note that it is trivial to achieve\ = max [0, = i] in (5), by applying the constant functiofi(o;) = j,
wherej maximizes maxr[o, = i] overi. Bound (5) measures how much better than trivial reconstruction
can be achieved.
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1.3. Bounds on reconstruction of phylogenetic trees

Bound 1.1 implies a bound on the number of characters needed for the reconstruction of a phylogenetic
tree from a collection of characters.

We let T'(s) denote the topology of the treE up to times and T¢(s) denote the topology of the
tree from times. In other words,T (s) contains all divergences up to time while 7¢(s) contains all
divergences from time.

Bound 1.2. Consider the problem of phylogenetic reconstruction for an i.i.d. model on a rooted tree
on n leaves, where the prior distribution on trees is given by a measure . Suppose, furthermore, that the
characters evolve as in Bound 1.1 with mutation matrix Q; ¢; = min;+; ¢; ; and g = Zj qj.

For all s, given T¢(s) and k independent characters at the n leaves of the tree, (ag )’;:l,

I(T(s); (g T () <k Y e 90, ®)
vedT

Let AT (s) be the probability of reconstructing, given 7<(s), the tree topology up to time s,

AT(s) = supP[f(aaj)’]‘.zl) = Tree topology at time s], 7
f

(the supis taken over all functions, and is obtained for f = maximum likelihood). Smilarly, let AT be
the probability of reconstructing 7' from (o} )’J‘.Zl.
Then

AT < AT(s) < maxulT(s) = T1+k D e at), (8)
vedT

Assume, furthermore, that 7' (s) has a uniform distribution among all topologies on r leaves conditioned
on T¢(s). Then

2k Z g4t ()=s)

T T ¢ vedT
AT = ATE) = MY SEaSTE 2 (T )T G)) 9)

2% Y et

e vedT

J2r =51 logy(2r — 5!

= max

Note that Bound (8) is applicable whéry_, . e 97~ << 1, while Bound (9) requires uniformity
and is applicable whet (T (s)|T¢(s)) is large compared td Y" ;7 e 10®=9),

Remark 1.1. In order to get a feeling for the asymptotic behavior of (8), fix s and assume that the
tree hasn = ¢f' leaves, all at time r. Here we take the asymptotics where r — oo (and therefore n — o),
while s, ¢, and B are all constants.

Then

Z e 4t (W)=s) _ exp(sq) exp(—t (g — B)).

vedT

Therefore, if g > B, then by (8) if we want to reconstruct the topology up to time s with high probability,
i.e, AT(s) > maxy u[T(s) = T]+n=°D, then we need that

k> expt(q — B — o(1))) = n9/B=170@,

So the number of characters needed is polynomial in n.
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2. PROOFS

Proof of Bound 1.1. The proof utilizes the method of coupling (see, e.g., Aldous and Fill [2003] for
background on coupling for Markov chains) and arguments from the theory of percolation (see Mossel
[2001], Peres [1997], and Athreya and Ney [1972] for background).

The mutation rate from state to statej is given byg; ;. Recalling (1), we may define the chain
equivalently as follows. Given the current state

[. Jump to statg with rategq;.
Il. Jump to statej with rategq; ; — g;.

The point here is that Step | is performed independently of the &tate

For edger = (u, v), let D(e) be the event that transition of type | occurs along the eddéote that the
eventsD(e) are independent for different edges and thgD (¢)¢] = exp(—qt(e)). Moreover, conditioned
on D(e), o, is independent of,.

For a leafv, let D(v) be the event that transition of type | occurs along an edgepat h(v). Then

PDWl= [] PDE1= [] e@©@=eaw.
ecpat h(U) ecpat h(v)

Note that conditioned o (v), o, is independent o&,. Finally, let D be the event thaD(v) holds for
all leavesv € 9T. Then

PIDT< Y PID@)T= ) e 4. (10)

vedT vedT

Note that conditioned o, o3 ando, are independent.
We now use the following standard identities in information theory:

I(0p,03) = H(op) — H(opl03), (112)
and
H(oplog) = Y Ploy = olH(o,loy = o). (12)
Moreover,
H(oplog =0) = P[D|og = olH (0|09 = 0, D) + P[D |0y = 01H (0,|05 = o, D). (13)

Recall that conditioned o, o, andoy are independent. ThereforH,(o,|0y = o, D) = H(o,|D). Since
o, and D are clearly independent, it follows that(o,|D) = H (o).
It therefore follows from (13) that

H(oyloy =0) > H(0,)P[D|oyg =0o]. (14)
Plugging (14) into (12) and using (10), we obtain that

H(o,log) = H(0,) Y _Ploy = o1P[Dloy = 0] = H(o,)P[D] (15)

= H(o,)(1—P[D]) > H(o,) (1 _ Z eqt(v)) ’

vedT

so (2) follows. Combining (11) and (2), we see that (3) follows (recall #igd,) < log, |C]).
To prove the bound on reconstruction (5), note that if we are not giyglor any other information on
o,), then the best reconstruction functignsatisfiesf = j, wherej maximizedr[o, = i] over alli, and
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this function has success probability maxo, = i]. Now let f be any reconstruction procedure and note
that on the evenD, o, is independent of; and therefore

A

Plf(0s) = 0,] < P[D] + P[D]P[f(03) = 0,|D]
< P[D‘1+ P[DImaxn[o, = i] < P[D]1+ maxz[o, = i],

and we obtain (5) by (10) as needed. |

Proof of Bound 1.2. We state below some basic properties/adnd Fano’s inequality which roughly
says that if/ (X, Y) is small, then it is hard to reconstruit given Y (see, e.g., Coveet al. [1991] for
background).

Lemma 2.1. Let X,Y, and Z be random variables such that X and Z are independent given Y, then

I1(X,Z) <min{I(X,Y), 1(Y,Z)} (“Data Processing Lemma”), (16)
I1(X,Y),Z2)=1(, 2), a7
1(X,2),Y)<IX,Y))+1(Z,Y). (18)

Lemma 2.2 (Fano's inequality). Let X and Y be random variables s.t. X has values in a set A of
sizem, Y hasvaluesin a set B, and

f:B—A

is the probability of reconstructing the value of X given Y (the supis taken over all functions). Then
H(A)+ (1— A)logy(m — 1) > H(X|Y), (20)
where H(A) = —Alog, A — (1 — A)logy(1 — A).
We start by proving Bound (6) fof (s). All the probabilities, entropies, and mutual informations in the
proof of (6) are conditioned ofi“(s). Recall thatoy = (0, : v € dT). Leto] = (o, : d(v, p) = 5) be the

i'th character at time. Clearly T (s) and (c})*_, are independent give@!)*_,.
In particular, by the data processing Lemma (16),

(T, @) = 1 (@Dl @hiy). (2)

Sinceo’ ando!’ are independent whein i,

k
1(@Diy ©Dly) = Y 1wl o). (22)
i=1

Forv at times, let 9(v) denote all the vertices atT" that are descendants of Let L, be the collection
of species at time. Note that(og(v) : v € Ly) are conditionally independent giverj. Therefore, by (18),

I(ol.0}) < Y I(0l.0},). (23)

veLy

Finally, note that(o. : w € Ly, w # v) are independent ofg(u) giveno!, and therefore for alb € Ly,

I(0}. 05, = 10}, o)) (24)
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Combining (21) with (22), (23), and (24), we obtain

k
EORCHIN ED D SPICR:

i=1lveL;

By Bound (1.1),/ (o}, ag(v)) < I'(v), where

C(v) = Z e w)=s)

wea(v)

Therefore,
1(T(), 0Df_y) =T,

where

P= 3 et

vedT

and we obtain (6) as needed.

We now prove (8) and (9). First, note that reconstruction probabilities increase given additional infor-
mation. ThereforeA” is bounded by the probability of reconstructifigs) given T¢(S). In other words,
AT < AT(s) for all s.

In order to obtain Bound (8), we repeat the proof of Bound 1.1. For chargctez say that the event
D; occurs if for allv € 9T, there exists a time > s at which transition of type I. (of Bound 1.1) occurs
along pat h(v). By the proof of Bound 1.1, it follows thaP[D{] < I', and therefordD[(mf.‘:lD,-)“] <
kT'. Conditioned om*_; D;, (¢{)*_; and (o})¥_, are independent, and therefo®(s) and (o})*_, are
independent. As in Bound 1.1, we conclude that

AT(s) = PUOZ D) T+ PUO DI maxul T (s) = T1 <k Y e 1™ + maxu(T(s) = T,
vedT

and (8) follows.
From (6) we conclude that

H (T | @Dy, T®) = HTOITS) = 1 (T), @DIT($)) = HT$IT(S)) = kT
From now on we assume thAtfs) has a uniform distribution givefi‘(s). Again, all probabilities, entropies,

etc. are conditioned offi ¢ (s). ’
By Lemma 2.2, we conclude that the probability= A (T(s), (oé)fle) of reconstructingl (s) given

(o)k_, satisfies
H(A)+ Q- A)H(T(s)) > H(T(s)) — kI (25)

The rest of the proof consists of calculations showing how to derive (9) from (25).
First, note that we can rewrite (25) as

H(A) 4+ kI = AH(T (s)),

from which we conclude that

(26)

{ 2H(A) 2r }
A < max .

H(T(s))" H(T(s))
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Note that—(1—x)log(1—x) < x for x € [0, 1], and thereforeH (A) < —Alog, A 4+ Alog,(e). Thus,
if A <2H(A)/H(T(s)), then Q5AH (T (s)) < —Alog, A + Alog,(e), or A < ¢/2HT)/2 g0 by (26),
we obtain

e 2r
A< max{ ST HT ) } . (27)
Since the number of binary trees erabeled leaves i$2r — 5)!!, we obtain (9) as needed. |
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