
Complete Convergence of Message Passing
Algorithms for some Satisfiability Problems

Uriel Feige1, Elchanan Mossel2 and Dan Vilenchik3

1 Micorosoft Research and The Weizmann Institute. urifeige@microsoft.com
2 U.C. Berkeley mossel@stat.berkeley.edu

3 Tel Aviv University vilenchi@post.tau.ac.il.

Abstract. Experimental results show that certain message passing al-
gorithms, namely, survey propagation, are very effective in finding satis-
fying assignments in random satisfiable 3CNF formulas. In this paper we
make a modest step towards providing rigorous analysis that proves the
effectiveness of message passing algorithms for random 3SAT. We ana-
lyze the performance of Warning Propagation, a popular message pass-
ing algorithm that is simpler than survey propagation. We show that
for 3CNF formulas generated under the planted assignment distribu-
tion, running warning propagation in the standard way works when the
clause-to-variable ratio is a sufficiently large constant. We are not aware
of previous rigorous analysis of message passing algorithms for satisfia-
bility instances, though such analysis was performed for decoding of Low
Density Parity Check (LDPC) Codes. We discuss some of the differences
between results for the LDPC setting and our results.

1 Introduction and Results

The effectiveness of some message passing algorithms, in particular Survey Prop-
agation, was experimentally shown for ”hard” formulas with clause-variable ratio
below (yet rather close to) the conjectured satisfiability threshold, ∼ 4.2 [3]. In
this paper we analyze the performance of Warning Propagation (WP for brevity),
a simple popular message passing algorithm, when applied to random satisfi-
able formulas generated under the planted distribution with a constant clause-
variable ratio. We show that the standard way of running message passing algo-
rithms – run message passing until convergence, simplify the formula according
to the resulting assignment, and satisfy the remaining subformula (if nonempty),
if possible, using a simple “off the shelf” heuristic – works for planted random
satisfiable formulas with a sufficiently large yet constant clause-variable ratio.
We are not aware of previous rigorous analysis of message passing algorithms
for non-trivial SAT distributions.

1.1 Different SAT Distributions

A CNF formula over the variables x1, x2, ..., xn is a conjunction of clauses C1, C2,
..., Cm where each clause is a disjunction of one or more literals. Each literal is

2 Uriel Feige, Elchanan Mossel and Dan Vilenchik

either a variable or its negation. A formula is said to be in k-CNF form if ev-
ery clause contains exactly k literals. A CNF formula is satisfiable if there is
a boolean assignment to the variables s.t. every clause contains at least one
literal which evaluates to true. 3SAT is the language of all satisfiable 3CNF for-
mulas. Although 2SAT is known to be in P, 3SAT is one of the most famous
NP-complete problems. In [12] it is proved that it is NP-hard to approximate
MAX-3SAT (the problem of finding an assignment that satisfies as many clauses
as possible) within a ratio better than 7/8. Given the difficulty of designing algo-
rithms that work well in the worst case, we consider the average case performance
of algorithms. One possibility for rigorously modeling average-case instances is
to use random models.

Algorithmic theory of random structures has been the focus of extensive
research in recent years (see [10] for a survey). As part of this trend, uniformly
random 3CNFs (generated by selecting at random m = m(n) clauses over the
variables {x1, ..., xn}) have attracted much attention. Random 3SAT is known
to have a sharp satisfiability threshold in the clause-to-variable ratio [9]. Namely,
a random 3CNF with clause-to-variable ratio below the threshold is satisfiable
whp (with high probability, meaning with probability tending to 1 as n goes
to infinity) and one with ratio above the threshold is unsatisfiable whp. This
threshold is not known exactly (and not even known to be independent of n).
The threshold is known to be at least 3.52 [14] and at most 4.506 [5].

In this work we mainly consider formulas with large clause-variable ratio. At
such ratios almost all 3CNF formulas are not satisfiable, therefore more refined
definitions are due. We consider three distributions on 3SAT instances. The first,
analogous to the well known random graph model Gn,p, is the distribution in
which every clause, out of 23

(
n
3

)
possible clauses, is included with probability p =

p(n). We denote this distribution by Pn,p. The second distribution is obtained
from Pn,p by conditioning on satisfiability, namely Psat

n,p[F] = Pn,p[F |S] where
S is the event that F is satisfiable. Lastly, we consider the planted distribution,
Pplant
n,p , which is obtained form Pn,p by conditioning on satisfiability by a specific

”planted” assignment ϕ. Equivalently, in Pplant
n,p , first an assignment ϕ to the

variables is picked uniformly at random. Then, every clause satisfied by ϕ is
included with probability p = p(n). Throughout, we use ϕ to denote the planted
assignment when the relevant instance is clear from context.

In the context of satisfiability algorithms, Psat
n,p is arguably the most interest-

ing and natural distribution to study. However, as pointed out frequently, Psat
n,p

seems hard to tackle rigorously and experimentally. The planted 3SAT distribu-
tion is an intermediate step towards analyzing Psat

n,p, and is an interesting, quite
natural distribution on its own right, the analog the of planted clique, planted
bisection, planted coloring, and planted bipartite hypergraphs studied e.g. in [2,
13, 6] The planted 3SAT distribution is also discussed e.g. in [8, 7]. Our main
result (Theorem 2) relates to the planted 3SAT model, but some of our other
results (such as Proposition 1 and Corollary 1) are relevant to the Psat

n,p setting
as well.

Convergence of Message Passing Algorithms for Some SAT Problems 3

1.2 3SAT and Factor Graphs

Let F be a 3CNF formula on n variables and m clauses. The factor graph
(e.g. [16]) of F , denoted by FG(F), is the following graph representation of
F . The factor graph is a bipartite multigraph, FG(F) = (V1 ∪ V2, E) where
V1 = {x1, x2, ..., xn} (the set of variables) and V2 = {C1, C2, ..., Cm} (the set
of clauses). (xi, Cj) ∈ E iff xi appears in Cj . For a 3CNF F with m clauses it
holds that #E = 3m (as every clause contains exactly 3 variables). To make
presentation clearer, we denote by #A the size of a set A and by |a| the absolute
value of a real number a. For simplicity we assume that every clause contains
three distinct variables, therefore FG is a graph (no parallel edges).

1.3 Warning Propagation

Warning Propagation (WP) is a simple iterative message passing algorithm, and
serves as an excellent intuitive introduction to more involved message passing
algorithms such as Belief Propagation [19] and Survey Propagation [3]. These
algorithms are based on the cavity method in which the messages that a clause
(or a variable) receives are meant to reflect a situation in which a ”cavity” is
formed, namely, the receiving clause (or variable) is no longer part of the formula.
Messages in the WP algorithm can be interpreted as ”warnings”, telling a clause
the values that variables will have if the clause ”keeps quiet” and does not
announce its wishes, and telling a variable which clauses will not be satisfied if
the variable does not commit to satisfying them. We now present the algorithm
in a formal way.

Let F be a CNF formula. For a variable x, let N+(x) be the set of clauses in
F in which x appears positively (namely, as the literal x), and N−(x) be the set
of clauses in which x appears negatively. For a clause C, let N+(C) be the set
of positively appearing variables and respectively N−(C) the set of negatively
appearing ones. There are two types of messages involved in the WP algorithm.
Messages sent from a variable xi to a clause Cj in which it appears:

xi → Cj =
∑

Ck∈N+(xi),k 6=j

Ck → xi −
∑

Ck∈N−(xi),k 6=j

Ck → xi

If xi appears only in Cj then we set the message to 0. The intuitive interpretation
of this message should be xi signals Cj what is currently its favorable assignment
by the other clauses it appears in (a positive message means TRUE, negative one
means FALSE and a 0 message means undecided). The second type are messages
sent from a clause Cj to a variable xi appearing in Cj :

Cj → xi =
∏

xk∈N+(Cj),k 6=i

I<0(xk → Cj)
∏

xk∈N−(Cj),k 6=i

I>0(xk → Cj)

where I<0(b) equals 1 if b < 0 and 0 otherwise (and symmetrically I>0(b) for the
case b > 0). If Cj contains only xi (which cannot be the case in 3CNF formulas)
then the message is set to 1. Cj → xi = 1 can be intuitively interpreted as Cj

4 Uriel Feige, Elchanan Mossel and Dan Vilenchik

sending a warning to xi asking it to satisfy Cj (as all other literals signaled Cj
that currently they evaluate to FALSE). Lastly, we define the current assignment
of a variable xi to be

Bi =
∑

Cj∈N+(xi)

Cj → xi −
∑

Cj∈N−(xi)

Cj → xi

If Bi > 0 then x is assigned TRUE, if Bi < 0 then xi is assigned FALSE,
otherwise xi is UNASSIGNED. Assume some order on the clause-variable mes-
sages (e.g. the lexicographical order on pairs of the form (j, i) representing
the message Cj → xi). Given a vector α ∈ {0, 1}3m in which every entry is
the value of the corresponding Cj → xi message, a partial assignment ψ ∈
{TRUE,FALSE,UNASSIGNED}n can be generated according to the corre-
sponding Bi values (as previously explained).

It would be convenient to think of the messages in terms of the corresponding
factor graph. Every undirected edge (xi, Cj) of the factor graph is replaced with
two anti-parallel directed edges, (xi → Cj) associated with the message xi → Cj
and respectively the edge (Cj → xi).
Warning Propagation(CNF formula F) :
1. construct the corresponding factor graph FG(F).
2. randomly initialize the clause-variable messages to 0 or 1.
3. repeat until no clause-variable message changed from the

previous iteration:
3.a randomly order the edges of FG(F).
3.b update all clause-variable messages Cj → xi according

to the random edge order.
4. compute a partial assignment ψ according to the Bi messages.
5. return ψ.

Note that in line 3.b. above when evaluating the clause-variable message
along the edge C → x, C = (x ∨ y ∨ z), the variable-clause messages concerning
this calculation (z, y → C) are evaluated on-the-fly using the last updated values
Ci → y, Cj → z (allowing feedback from the same iteration). We allow the
algorithm not to terminate (the clause-variable messages may keep changing
every iteration). If the algorithm does return an assignment ψ then we say that it
converged. In practice it is common to limit in advance the number of iterations,
and if the algorithm didn’t converge by then, return a failure.

1.4 Related Work and Techniques

The Survey Propagation algorithm [3] experimentally outperforms all known al-
gorithms in finding satisfying assignments to Pn,p formulas with clause-variable
ratio ρ close to the satisfiability threshold (4 ≤ ρ ≤ 4.25). However, theoretical
understanding of Survey Propagation and other message passing algorithm for
random SAT problems is still lacking. This should be compared with the success
of message passing algorithms for decoding low-density-parity-check (LDPC)

Convergence of Message Passing Algorithms for Some SAT Problems 5

codes [11]. Here, the experimental success of message passing algorithms [11]
was recently complemented rigourously by a large body of theoretical work, see
e.g. [17, 20, 18]. Some important insights emerge from this theoretical work. In
particular, it is shown that the quality of decoding improves exponentially with
the number of iterations – thus all but a small constant fraction of the received
codeword can be decoded correctly using a constant number of iterations. Our
analysis of WP shows that much of the coding picture is valid also for Pplant

n,p thus
providing important insights as to the success of message passing algorithms for
random satisfiability problems. The planted 3SAT model is similar to LDPC in
many ways. Both constructions are based on random factor graphs. In codes, the
received corrupted codeword provides noisy information on a single bit or on the
parity of a small number of bits of the original codeword. In Pplant

n,p , ϕ being the
planted assignment, the clauses containing a variable xi contain noisy informa-
tion on the polarity of ϕ(xi) in the following sense – each clause contains xi in
a polarity coinciding with ϕ(xi) with probability 4/7. Our results are similar in
flavor to the coding results. However, the combinatorial analysis provided here
allows to recover an assignment satisfying all clauses, whereas in the random
LDPC codes setting, message passing allows to recover only 1− o(1) fraction of
the codeword correctly. In [18] it is shown that for the erasure channel, all bits
may be recovered correctly using a message passing algorithm, however in this
case the LDPC code is designed so that message passing works for it. We on the
other hand take a well known SAT distribution and analyze the performance of a
message passing algorithm on it. Moreover, the SAT setting is more involved, as
there are many assignments satisfying the formula, while for the erasure channel
there is a unique codeword satisfying the combinatorial constraints given by the
message.

As for relevant results in random graph theory, the seminal work of [2] paved
the road towards dealing with large-constant-degree planted distributions. [2]
present an algorithm that whp k-colors planted k-colorable graphs with a suffi-
ciently large constant expected degree. Building upon the techniques introduced
by [2], [13] present an algorithm that 2-colors sparse planted 3-uniform bipartite
hypergraphs and [8], solving an open question posed in [15], presents an algo-
rithm for satisfying large constant degree planted 3SAT instances. Though in
our analysis we use similar techniques to the aforementioned works, our result is
conceptually different in the following sense. In [2, 13, 8] the starting point is the
planted distribution, and then one designs an algorithm that works well under
this distribution. The algorithm may be designed in such a way that makes its
analysis easier. In contrast, our starting point is a given message passing algo-
rithm (WP), and then we ask for which input distributions it works well. We
cannot change the algorithm in ways that would simplify the analysis.

Another difference between our work and that of [2, 13, 8] is that unlike the
algorithms analyzed in those other papers, WP is a randomized algorithm which
makes its analysis more difficult. We could have simplified our analysis had we
changed WP to be deterministic (for example, by initializing all clause-variable
messages to 1 in step 2 of the algorithm), but there are good reasons why WP

6 Uriel Feige, Elchanan Mossel and Dan Vilenchik

is randomized. For example, it can be shown that (the randomized version) WP
converges with probability 1 on 2CNF formulas that form one cycle of implica-
tions, but might not converge if step 4 does not introduce fresh randomness in
every iteration of the algorithm (details omitted).

1.5 Notation

Given a 3CNF F , simplify F according to ψ, when ψ is a partial assignment,
means: in every clause substitute every assigned variable with the value given
to it by ψ. Then remove all clauses containing literals which evaluate to true.
In all remaining clauses, remove all literals which evaluate to false (the resulting
instance is not necessarily in 3CNF form). Denote by F|ψ the 3CNF F simplified
according to ψ. For a set of variables A ⊆ V , denote by F [A] the set of clauses
in which all variables belong to A.

Given a 3CNF formula F , we say that a variable x is pure in F if it appears
only in one polarity (namely, always appears as the literal x or always as the
literal x̄). Let P0 be the set of pure variables in F , and C0 be the set of clauses
containing a pure variable. Let L0 = F , and L1 = L0 \ C0. Let P1 be the
pure variables in L1, namely the variables that become pure after setting the
pure variables in a satisfying manner and simplifying F . Similarly, define C1

to be the set of clauses in L1 containing a variable from P1. Generally, define
Li = Li−1 \ Ci−1, Pi to be the pure variables in Li, and Ci to be the clauses in
Li containing a variable from Pi. We say that a 3CNF F is r-pure if Lr = ∅ .
The following theorem is implicitly proved in [4].

Theorem 1. Let F be randomly sampled according to Pn,p, p = d/n2, d <
1.225, then whp F is O(n)-pure.

Note that if there exists an r s.t. F is r-pure then in particular F is satisfiable.
To better understand our results it would be convenient to have the somewhat
informal notion of a simple formula in mind. We call a CNF formula simple, if it
can be satisfied using simple well-known heuristics (examples include formulas
whose factor graph is tree-like and r-pure formulas – both solvable using the
pure-literal heuristic [4], formulas with small weight terminators – to use the
terminology of [1] – efficiently solvable whp using a RWalkSat, etc).

1.6 Our Results

Theorem 2. Let F be a 3CNF formula randomly sampled according to Pplant
n,p ,

where p ≥ d/n2, d a sufficiently large constant, and let ϕ be its planted assign-
ment. Then the following holds with probability 1− e−Θ(d) (the probability taken
over the choice of F , the random choices in line 2 of the WP algorithm, and the
random order in the first time line 4 executes):

1. WP(F) converges after at most O(log n) iterations.

Convergence of Message Passing Algorithms for Some SAT Problems 7

2. Let ψ be the partial assignment returned by WP(F), let VA denote the vari-
ables assigned to either TRUE or FALSE in ψ, and VU the variables left
UNASSIGNED. Then for every variable x ∈ VA, ψ(x) = ϕ(x). Moreover,
#VA ≥ (1− e−Θ(d))n.

3. F|ψ[VU] is a simple formula which can be satisfied in time O(n).

Remark 1. We also have a proof of Theorem 2 with ‘1 − o(1)’ instead of ‘1 −
e−Θ(d)’. This however involves a somewhat more complicated analysis exceeding
the scope of this abstract. For the full details the reader is referred to the journal
version.

Proposition 1. Let F be a 3CNF formula randomly sampled according to Pplant
n,p ,

where p ≥ c log n/n2, with c a sufficiently large constant, and let ϕ be its planted
assignment. Then whp after at most 2 iterations WP(F) converges, and the
returned ψ equals ϕ. (This result can be extended to Psat

n,p, see below.)

Proposition 2. Let F be an r-pure CNF formula. Then after at most O(r)
iterations of WP(F), regardless of the initial messages and the order of execution,
the following holds:

1. WP(F) converges.
2. Let ψ be the assignment returned by WP(F). If ψ(x) 6= UNASSIGNED,

then in every satisfying assignment x is assigned according to ψ(x).
3. If F contains no unit clauses then ψ is the all-UNASSIGNED vector.

Corollary 1. In the setting of Theorem 1, whp WP(F) converges after at most
O(n) iterations and the returned ψ is the all-UNASSIGNED vector.

The corollary follows immediately from Theorem 1 and Proposition 2.

Proposition 3. Let F be a satisfiable CNF formula whose corresponding factor
graph contains no cycles. Then F is O(n)-pure.

The main idea behind the proof of Theorem 2 is to show that the formula is
dense enough so that whp there exists a large subformula forcing WP to point in
the correct direction. The rest of the formula induces a factor graph containing
only trees, which are also ”easy” for WP. We note that formulas in Pplant

n,p ,
with n2p some large constant, are not known to be simple (in the sense that
we defined above). On the contrary, ”hardness” evidence can be found in works
such as [1], showing that RWalkSat is very unlikely to hit a satisfying assignment
in polynomial time when running on a random Pplant

n,p instance in the setting of
Theorem 2. In the setting of Proposition 1, the formula is already dense enough
so that whp it forces entirely WP to point to the planted assignment.

Proposition 2 combined with Proposition 3 provide a proof to the convergence
of WP on trees. Our proof of this known result gives an explicit characterization
of the fixed point to which WP converges (which is implicit for trees in [3]).

The remainder of the paper is structured as follows. In Section 2 we discuss
some properties that a typical instance in Pplant

n,p possesses, and outline the proof
of Theorem 2 and Proposition 1. In Section 3 we summarize our results and
discuss potentially interesting lines for further research. Most details of the proofs
are omitted and can be found in the journal version.

8 Uriel Feige, Elchanan Mossel and Dan Vilenchik

2 Properties of a Random Pplant
n,p Instance

In this section we discuss relevant properties of a random Pplant
n,p instance. To

simplify presentation, we assume w.l.o.g. (due to symmetry) that the planted
assignment ϕ is the all-one vector.

2.1 Stable Variables

Definition 1. A variable x supports a clause C with respect to a partial as-
signment ψ, if it is the only variable to satisfy C under ψ, and the other two
variables are assigned by ψ.

Proposition 4. Let F be as in the setting of Theorem 2 and let FSUPP be a
random variable counting the number of variables in F whose support w.r.t. ϕ
is less than d/3. Then, E[FSUPP] ≤ e−Θ(d)n.

This follows from concentration arguments as every variable is expected to sup-
port d

n2 ·
(
n
2

)
= d

2 +O(1
n) clauses.

Following the definitions in Section 1.3, given a CNF F and a variable x, we
let N++(x) be the set of clauses in F in which x appears positively but doesn’t
support w.r.t. ϕ. Let Ns(x) be the set of clause in F which x supports w.r.t. ϕ.
Let π = π(F) be some ordering of the clause-variable message edges in the factor
graph of F . For an index i and a literal `x (by `x we denote a literal over the
variable x) let π−i(`x) be the set of clause-variable edges (C → x) that appear
before index i in the order π and in which x appears in C as `x. For a set of
clause-variable edges E and a set of clauses C we denote by E ∩ C the subset of
edges containing a clause from C as one endpoint.

Definition 2. A variable x is stable in F w.r.t. an edge order π if the following
holds for every clause-variable edge C → x (w.l.o.g. assume C = (`x ∨ `y ∨ `z),
C → x is the i’th message in π):

1. |#π−i(y) ∩N++(y)−#π−i(ȳ) ∩N−(y)| ≤ d/30.
2. |#N++(y)−#N−(y)| ≤ d/30.
3. #Ns(y) ≥ d/3

and the same holds for z.

Proposition 5. Let F be as in the setting of Theorem 2, and let π be a random
ordering of the clause-variable messages. Let FUNSTAB be a random variable
counting the number of variables in F which are not stable. Then, E[FUNSTAB] ≤
e−Θ(d)n.

This follows from concentration arguments since E[#π−i(y)∩N++(y)−#π−i(ȳ)∩
N−(y)] = 0, E[#N++(y) −#N−(y)] = 0, and since every variable is expected
to appear in at most O(d) clauses.

Let α ∈ {0, 1}3#F be a clause-variable message vector. For a set of clause-
variable message edges E let 1α(E) be the set of edges along which the value is

Convergence of Message Passing Algorithms for Some SAT Problems 9

1 according to α. For a set of clauses C, 1α(C) denotes the set of clause-variable
message edges in the factor graph of F containing a clause from C as one endpoint
and along which the value is 1 in α.

Definition 3. A variable x is violated by α in π if there exists a message
C → x, C = (`x ∨ `y ∨ `z), in place i in π s.t. one of the following holds:

1. |#1α(π−i(y) ∩N++(y))−#1α(π−i(ȳ) ∩N−(y))| > d/30
2. |#1α(N++(y))−#1α(N−(y))| > d/30
3. #1α(Ns(y)) < d/7.

Or one of the above holds for z.

Proposition 6. Let F be as in the setting of Theorem 2, and let X be a set of
stable variables w.r.t. an arbitrary ordering π. Let α be a random clause-variable
message vector. Let FV IO be a random variable counting the number of violated
variables in X. Then, E[FV IO] ≤ e−Θ(d)#X.

The proof again uses concentration arguments.

2.2 Dense Subformulas

The next property we discuss is analogous to a property proved in [2] for random
graphs. Loosely speaking, [2] prove that whp a random graph doesn’t contain a
small induced subgraph with a large average degree. Using first moment calcu-
lations we show:

Proposition 7. Let c > 1 be an arbitrary constant. Let p ≥ d/n2, where d is
a large constant. Then whp over F ∈ Pplant

n,p as n → ∞ there exists no subset
of variables U , s.t. #U ≤ e−Θ(d)n and there are at least c#U clauses in F
containing two variables from U .

2.3 The Core Variables

We describe a subset of the variables, denoted throughout by H and referred to
as the core variables, which plays a crucial role in the analysis. Loosely speaking,
a variable is considered ”safe” if it is stable w.r.t. the initial random order π,
and it is not violated by the initial clause-variable message assignments α. If in
addition, a safe variable xi supports many clauses w.r.t. ϕ (whose correspond-
ing message is ’1’ in α), then its corresponding Bi value will agree with ϕ(xi)
after the first iteration. This invariant needs to be preserved however in later
iterations. The set H captures the notion of such variables with a self-preserving
quality. There are several ways to obtain these desired properties. Formally,
H = H(F , ϕ, α, π) is constructed using the following iterative procedure:

Let A1 be the set of variables whose support w.r.t. ϕ is at most
d/3.
Let A2 be the set of non-stable variables w.r.t. π.

10 Uriel Feige, Elchanan Mossel and Dan Vilenchik

Let A3 be the set of stable variables w.r.t. π violated by α.
1. Set H0 = V \ (A1 ∪A2 ∪A3).
2. While ∃ai ∈ Hi

supporting less than d/4 clauses in F [Hi] OR
appearing in more than d/30 clauses not in F [Hi] : let Hi+1 = Hi \ {ai}.
3. Define H = Hm+1 where am := last variable removed in step 2.

Proposition 8. If both α and π are chosen uniformly at random then whp
#H ≥ (1− e−Θ(d))n.

The main idea of the proof is to observe that to begin with we eliminate very
few variables (using the discussion in Section 2.1 to bound #A1 ∪ A2 ∪ A3). If
too many variables were removed in the iterative step then a small but dense
subformula exists. Proposition 7 bounds the probability of the latter occurring.

2.4 The Factor Graph of the Non-Core Variables

Proposition 8 implies that for p = c log n/n2, c a sufficiently large constant, whp
H contains already all variables. The following analysis is needed for the setting
of Theorem 2. The non-core factor graph is the factor graph of the formula F
simplified according to the partial assignment that assigns all core variables to
their value in the plant.

Proposition 9. Whp every connected component in the non-core factor graph
contains O(log n) variables.

Proposition 9 will not suffice to prove Theorem 2, and we need a further char-
acterization of the non-core factor graph.

Proposition 10. With probability 1− e−Θ(d), there exists no cycle in the non-
core factor graph.

2.5 Outline of Proof of Theorem 2 and Proposition 1

We start with Theorem 2 and derive Proposition 1 as an easy corollary of the
analysis. The outline of the proof is as follows. We assume that the formula F
and the run of WP are typical in the sense that Propositions 8, 9 and 10 hold.
First we prove that after one iteration WP sets the core variables H correctly (Bi
agrees with ϕ in sign) and this assignment does not change in later iterations.
Therefore from iteration 2 and onwards WP is basically running on F in which
variables belonging to H are substituted with their planted assignment. This
subformula is satisfiable and its factor graph is a forest (namely, composed of
disjoint trees). Therefore, convergence is guaranteed. The set VA of Theorem 2
is composed of all variables from H and those variables from the forest that
get assigned. The set VU is composed of the UNASSIGNED variables from the
forest.

We say that a message C → x, C = (`x ∨ `y ∨ `z), is correct if its value is the
same as it is when y → C and z → C agree in sign with their planted assignment
(in other words, C → x is 1 iff x supports C w.r.t. ϕ).

Convergence of Message Passing Algorithms for Some SAT Problems 11

Proposition 11. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct at
the beginning of an iteration (line 3 in the WP algorithm), then this invariant is
kept by the end of that iteration.

Proposition 12. If xi ∈ H and all messages C → xi, C ∈ F [H] are correct by
the end of a WP iteration, then Bi agrees in sign with ϕ(xi) by the end of that
iteration.

Proposition 12 follows immediately from the definition of H and the message
Bi. It remains to show then that after the first iteration all messages C → xi,
C ∈ F [H] are correct.

Proposition 13. If F is a typical instance in the setting of Theorem 2, then
after one iteration of WP(F), for every variable xi ∈ H, every message C → xi,
C ∈ F [H] is correct.

Proposition 14. Let F be a typical instance in the setting of Theorem 2, then
for every variable xj ∈ V \ H, after O(log n) iterations either Bj = 0 or Bj
agrees in sign with ϕ(xj).

As for satisfying the set of unassigned variables in time O(n), Propositions 3
and 10 imply that the pure-literal procedure [4] solves the subformula induced
by the unassigned variables in linear time. Theorem 2 then follows.

To prove Proposition 1, observe that when p = c log n/n2, with c a sufficiently
large constant, Proposition 8 implies H = V . Combing this with Proposition 13,
Proposition 1 readily follows.

3 Discussion

We conclude with an open problem. Can our analysis be extended to show that
Belief Propagation (BP) finds a satisfying assignment to Pplant

n,p in the setting of
Theorem 2? Experimental results predict the answer to be positive. However,
our analysis of WP does not extend as is to BP. In WP, all warnings received
by a variable (or by a clause) have equal weight, but in BP this need not be the
case (there is a probability level associated with each warning). In particular,
this may lead to the case that messages received from non-core portions of the
formula can effect the core, a possibility that our analysis managed to exclude
for the WP algorithm.

Acknowledgements:
We thank Eran Ofek for many useful discussions. This work was done while

the authors were visiting Microsoft Research, Redmond, Washington. E.M is
supported by a Sloan fellowship in Mathematics, by NSF Career award DMS-
0548249 and NSF grants DMS-0528488 and DMS-0504245.

12 Uriel Feige, Elchanan Mossel and Dan Vilenchik

References

1. M. Alekhnovich and E. Ben-Sasson. Linear upper bounds for random walk on small
density random 3-cnf. In Proc. 44th IEEE Symp. on Found. of Comp. Science, page
352, 2003.

2. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM J. on Comput., 26(6):1733–1748, 1997.

3. A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms, 27:201–226, 2005.

4. A. Z. Broder, A. M. Frieze, and E. Upfal. On the satisfiability and maximum
satisfiability of random 3-cnf formulas. In Proc. 4th ACM-SIAM Symp. on Discrete
Algorithms, pages 322–330, 1993.

5. O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-sat formulae and the
satisfiability threshold. In Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,
pages 126–127, 2000.

6. U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures and Algorithms, 16(2):195–208, 2000.

7. U. Feige and D. Vilenchik. A local search algorithm for 3SAT. Technical report,
The Weizmann Institute of Science, 2004.

8. A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc.
14th ACM-SIAM Symp. on Discrete Algorithms, pages 357–363, 2003.

9. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer.
Math. Soc., 12(4):1017–1054, 1999.

10. A. M. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random
Structures and Algorithms, 10(1-2):5–42, 1997.

11. T. G. Gallager. Low-density parity-check codes. IRE. Trans. Info. Theory, IT-
8:21–28, January 1962.

12. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
13. C. Hui and A. M. Frieze. Coloring bipartite hypergraphs. In Proceedings of the

5th International IPCO Conference on Integer Programming and Combinatorial
Optimization, pages 345–358, London, UK, 1996. Springer-Verlag.

14. A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of a
greedy satisfiability algorithm. In Proc. 10th Annual European Symposium on Al-
gorithms, volume 2461 of Lecture Notes in Comput. Sci., pages 574–585. Springer,
Berlin, 2002.

15. E. Koutsoupias and C. H. Papadimitriou. On the greedy algorithm for satisfiability.
Info. Process. Letters, 43(1):53–55, 1992.

16. F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,
2001.

17. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. Analysis of
low density parity check codes and improved designs using irregular graphs. In
Proceedings of the 30th ACM Symposium on Theory of Computing, pages 249–258,
1998.

18. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. Efficient erasure
correcting codes. IEEE Trans. Info. Theory, 47:569–584, February 2001.

19. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

20. T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching
irregular low-density parity check codes. IEEE Trans. Info. Theory, 47:619–637,
February 2001.

