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Abstract

The CUR matrix decomposition and the
related Nyström method build low-rank
approximations of data matrices by select-
ing a small number of representative rows
and columns of the data. Here, we intro-
duce novel spectral gap error bounds that
judiciously exploit the potentially rapid
spectrum decay in the input matrix, a most
common occurrence in machine learning
and data analysis. Our error bounds are
much tighter than existing ones for matri-
ces with rapid spectrum decay, and they
justify the use of a constant amount of over-
sampling relative to the rank parameter
k, i.e, when the number of columns/rows
is ` = k + O(1). We demonstrate our
analysis on a novel deterministic algorithm,
StableCUR, which additionally eliminates
a previously unrecognized source of po-
tential instability in CUR decompositions.
While our algorithm accepts any method of
row and column selection, we implement it
with a recent column selection scheme with
strong singular value bounds. Empirical re-
sults on various classes of real world data
matrices demonstrate that our algorithm is
as efficient as, and often outperforms, com-
peting algorithms.
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1 Introduction

The CUR matrix decomposition approximates an ar-
bitrary data matrix by selecting a subset of columns
and a subset of rows to form a low-rank approx-
imation [7, 13]. This method overcomes a funda-
mental drawback of standard PCA: that the princi-
pal components are dense. Dense components suffer
from two main disadvantages: loss of sparsity and
reduced interpretability. On the other hand, the
CUR decomposition is a product of three matrices:
two (C and R with c sampled columns and r sam-
pled rows of A respectively) preserve the sparsity of
the data matrix, while the third (U) is a relatively
small dense matrix. Thus the CUR approximation is
cheaper to work with and to store. C and R also im-
ply critical information in some applications [7, 13].

Notable applications of CUR include bioinformatics,
document classification, image and video processing,
securities trading, and web graphs [2, 13, 14, 15, 16].
Furthermore, the CUR decomposition is widely
studied in machine learning because the Nyström
method is a special case of CUR. The Nyström
method approximates large kernel matrices that are
used for kernel methods, manifold learning, and di-
mension reduction [6, 16, 17, 18, 19, 20]. In par-
ticular, the recent work of [9] introduced an effi-
cient leverage-based random sampling algorithm for
Nyström approximation that is analyzed simultane-
ously for both the spectral and Frobenius norms,
while other recent work requires separate algorithms
depending on the choice of norm. CUR is also a
natural extension of the CX decomposition, which
selects either columns or rows, but not both, of the
data matrix, and which has been studied in [3, 11].
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In general, these works seek to obtain improved mul-
tiplicative error bounds, which are of the form

‖A−CUR‖ξ ≤ f (m,n, k, c, r) ‖A−Ak‖ξ,

where ξ ∈ {2, F}, and where f is a polynomial func-
tion and Ak is an optimal rank-k approximation to
a given A ∈ Rm×n. When f does not depend on
m and n, these bounds are called constant factor
bounds [12]. Recent works have also established rel-
ative error bounds, where f ≈ 1 + ε for a selection of
roughly O(k/ε) rows and columns [4, 7, 9, 12, 16, 17].

Regardless of the form of the guarantee, there
are two main drawbacks to the practical use of
these existing approaches to CUR decompositions
and the Nyström method: choosing ` & O(k/ε)
columns/rows is often not practical, and thus one
typically chooses ` = k + O(1), i.e., many fewer
columns/rows than the sufficient conditions required
by the worst-case theory; and, additionally, no
known results adapt these methods specifically to
matrices with rapidly decaying singular values. Be-
cause most data matrices to which CUR decom-
positions have been applied have decaying singular
values, and because a decaying spectrum facilitates
better approximations, CUR decompositions would
greatly benefit from analysis connecting the quality
of the approximation to the rate of spectral decay.

We introduce powerful spectral gap error bounds
that solve these two related problems. We perform
a more refined analysis based on the spectrum of the
input data, and present bounds of the form

‖A−CUR‖2ξ ≤
(
1 +O

(
τ2
))
‖A−Ak‖2ξ ,

for ξ ∈ {2, F}, where k is the target rank and τ
is a quantity that depends on the singular value
rate of decay of A and the amount of oversampling.
For matrices with rapidly decaying singular values,
and as a function of the amount of oversampling,
τ � 1. Thus, unlike previous work, our error bounds
are near-optimal for matrices with rapidly decaying
spectra, and the approximations achieve optimality
in the limit as the rates of decay of the spectra in-
crease. (Such a result is a natural requirement for a
good approximation method, but none have proved
this.) These bounds also help explain why it is ac-
ceptable to use a constant O(1) amount of oversam-
pling, i.e., why, given a desired rank k, one can sam-
ple c = k+O(1) columns and/or r = k+O(1) rows.

We also show that CUR can be unstable, and we de-
velop a novel algorithm, StableCUR, that completely
avoids this instability. This algorithm accepts any C
and R matrices from any row and column selection

algorithm, and avoids calculating U, which we show
can be ill-conditioned. We apply the column selec-
tion algorithm from [1] to determine C and R, and
then we apply our algorithm to compute a CUR de-
composition in a stable form. Also, we compare the
performance of the combination of these two algo-
rithms to existing randomized CUR algorithms. For
input matrices with rapidly decaying spectra, and
when performing only a constant amount of over-
sampling relative to the rank k, our CUR algorithm
combined with the algorithm from [1] achieves im-
proved error bounds, improved computational com-
plexity, and reduced storage compared to current
methods. We also provide a brief empirical illustra-
tion of how deterministic and randomized CUR de-
compositions perform as a function of the oversam-
pling parameter for matrices for which the spectrum
decays quickly, as well as when it decays slowly.

2 Preliminaries

In this section we review previous results and im-
portant theorems to be used in our main results.

2.1 The CUR Decomposition

Given a matrix A ∈ Rm×n with rank ρ and a target
rank k, we choose a subset of columns C ∈ Rm×c, a
subset of rows R ∈ Rr×n and compute a matrix U ∈
Rc×r so that Ã = CUR approximates A, where
k < c� n and k < r � m. Thus only C, U, and R
need to be stored, which are much smaller than the
original matrix A. Additionally, C and R retain the
sparsity of the original matrix.

2.2 Notation
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Figure 1: Illustration of Σ’s when k = 20 and p = 40.
Quick singular value decay implies we can choose
k+O(1) columns and rows for small residual errors.
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We exploit the potential decay in the singular val-
ues of A for better computational efficiency and de-
composition reliability. Consider a parameter p such
that k ≤ p < min(c, r). In the SVD of A = UΣVT ,
we partition U and V as

U =
( p ρ− p

m U1 U2

)
, V =

( p ρ− p

n V1 V2

)
. (1)

Let Σ = diag(σ1, · · · , σρ), σ1 ≥ · · · ≥ σρ > 0 with

Σ =

( p ρ− p

p Σ1

ρ− p Σ2

)
, Σ1 =

( k p− k

k Σ
(T)
1

p− k Σ
(O)
1

)
.

In equation (1), U1 and V1 comprise p orthonormal
columns spanning leading p-dimensional row space
and column space respectively. The largest k singu-
lar values of A are contained in the diagonal matrix

Σ
(T)
1 , which in turn is contained in Σ1; the (p+1)-th

through the ρ-th singular values of A are contained
in Σ2. The value of p is chosen to create a “spec-
trum gap” between the kth and (p + 1)th singular
values of A. To the best of our knowledge, such a
partition was first introduced in [10]. Section 3 will
show that if this gap is large, then the rank-k CUR
approximation differs from the best possible rank-k
approximation by a negligible amount.

Based on the SVD, the row statistical leverage scores
and the row coherence relative to the best rank-p ap-
proximation to A are defined through the p leading
left singular vectors in U1:

lrj = ||U1(j, :)||2 , µr =
m

p
× max
j∈{1,...m}

lri . (2)

Similarly, the column statistical leverage scores and
the column coherence relative to the best rank-p ap-
proximation to A are defined through the p leading
right singular vectors in V1:

lcj = ||V1(j, :)||2 , µc =
n

p
× max
j∈{1,...n}

lci . (3)

The Moore-Penrose inverse of A is A† = VΣ−1UT .
For A ∈ Rm×n(with m ≥ n) it takes O(mn2)
flops to compute the SVD and QR decomposition,
O(mnk) to compute the truncated SVD of rank-k,
and O(mn lnn) flops to compute leverage scores [5].

2.3 The Sketching Model

Let Πr ∈ Rm×r and Πc ∈ Rn×c be row and column
sketching matrices. Examples include sampling ma-
trices that select a subset of columns and rows of

A and Gaussian matrices which produce matrices
C and R that are Gaussian mixtures of columns
and rows of A. Take C = AΠc, R = ΠT

r A, and
U = C†AR†. Then the CUR approximation is de-
fined as Ã = CUR, and Ãk = (CUR)k is an ap-
proximation to A with rank at most k. Following
[9], and for completeness, we formulate our main
theoretical result in terms of arbitrary “sketching”
matrices. Let

Ψ1 := UT
1 Πr and Ψ2 := UT

2 Πr.

Intuitively, Ψ2Ψ†1 defines the tangents of the an-
gles between the spaces spanned by U1 and Πr [9].
These angles should be sufficiently acute for Πr to
be a good sketch matrix. Similarly let,

Ω1 := VT
1 Πc and Ω2 := VT

2 Πc,

and Ω2Ω†1 defines the tangents of the angles between
the spaces spanned by V1 and Πc.

When considering the modified Nyström method for
positive semi-definite A instead of the CUR approx-
imation, we will only use Πc and Ω, and we set the
other side by R = CT .

2.4 Notion of Optimality

We employ the follow metric of approximation opti-
mality due to Eckart and Young. Let

Ak =

k∑
i=1

σiuiv
T
i

be the rank-k truncated SVD of a data matrix A.

Theorem 1. (Eckart-Young)

Ak = arg min
rank(B)≤k

‖A−B‖2 = arg min
rank(B)≤k

‖A−B‖F ,

with

‖A−Ak‖2 = σk+1, ‖A−Ak‖F =

√√√√ ρ∑
j=k+1

σ2
j .

2.5 Deterministic Column-Selection

In this section we describe the deterministic Un-
weighted Column Selection (UCS) algorithm of [1],
which will be used in our main results. Applied to a
given a matrix VT ∈ Rp×n with orthonormal rows,
this greedy algorithm attempts to choose a subset π
of columns to maximize σmin

(
VT (:, π)

)
. The pre-

vious column selection algorithm of [3] requires two
3
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input matrices and outputs a weighted column selec-
tion, for which the weights could be arbitrary. The
algorithm of [1] requires a single, relatively small
input matrix and outputs an unweighted column se-
lection, while also proving tighter error bounds. The
fact that column selection algorithm of [3] requires
two matrices to work on makes it less efficient than
UCS in complexity and memory use. Consider the
matrix VT

1 in equation (1). We refer to the ith col-
umn as ~ui ∈ Rp. Then the UCS algorithm is sum-
marized as follows: starting with a p-by-p matrix
B = 0 and a parameter T > 0, the UCS algorithm
iteratively selects ` columns of VT

1 by iterating:

• solve for the unique λ < λmin(B) such that

tr (B − λI)
−1

= T, (4)

• solve for the unique λ̂ < λk that satisfies(
λ̂− λ

)(
n− r +

p∑
j=1

1 − λj
λj − λ

)

=

∑ 1−λj

(λj−λ)(λj−λ̂)∑
1

(λj−λ)(λj−λ̂)

, (5)

where λj is the jth eigenvalue of B,
• find an index i, not already selected, such that

tr
(
B − λ̂I + ~ui~u

T
i

)
≤ tr (B − λI)

−1
(6)

• reset B := B + ~ui~u
T
i .

Theorem 2. An index i /∈ Π can always be found
to satisfy condition (6).

Carried out efficiently, each i can be computed in
O(p2n) operations. We summarize the above proce-
dure in Algorithm 1. It can be shown that

λmin (B`) ≥
(
√
`−√p)2

(
√
n− p+

√
`)2 + (

√
`−√p)2

. (7)
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Figure 2: Stability comparison of the naive CUR
algorithm and our proposed stable sketch algorithm.

Algorithm 1 Unweighted Column Selection (UCS)

Inputs: Row-orthonormal matrix VT
1 ∈ Rp×n, T ∈

R+, `, p ∈ N s.t. k ≤ p < `
Outputs: Index set Π and matrix B.
1: Set B0 = 0p×p, Π0 = φ
2: for t = 0, · · · , `− 1 do
3: Solve for λ using equation (4)

4: Calculate λ̂ using equation (5)
5: Find i 6∈ Π such that inequality (6) is satisfied

with ~ui
6: Update Bt+1 := Bt + ~ui~u

T
i and Π := Π ∪ {i}.

7: end for

3 Theoretical Results

In this section, we present our StableCUR algorithm
and our spectral gap error bounds.

3.1 The StableCUR Algorithm

Directly computing Ã by multiplying C,U,R
together is not numerically stable. Here, we present
a new algorithm, StableCUR, to construct Ã. Each
step of this procedure is numerically stable, and
standard libraries exist for both QR and SVD.

Algorithm 2 StableCUR

Inputs: A ∈ Rm×n, R ∈ Rr×m, C ∈ Rn×c, target
rank k

Outputs: Ã ∈ Rm×n and Ãk ∈ Rm×n
1: Do QR factorization on RT to obtain a basis of

rows of R, R = RrQr

2: Do QR factorization on C to obtain a basis of
columns of C, C = QcRc

3: B = QT
c AQT

r

4: Ã = QcBQr

5: Do SV D on B to Compute Bk.
6: Ãk = QcBkQr

In Figure 2 we compare the naive procedure and our
stable procedure on a synthesized matrix whose ith
singular value is 2−i. The naive computations could
lead to inaccurate results because as the number of
columns and rows in C and R increase, these matri-
ces capture a greater amount of the singular values
of A, and so U = C†AR† can be ill-conditioned. Al-
though the algorithm above performs QR on both C
and R, QR for either C or R is all that is necessary
to make it stable.

4
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3.2 Spectral Gap Error Bounds

Here, we introduce our spectral gap error bounds,
theorems about accuracy in the individual singular
values and error bounds in the spectral and Frobe-
nius norms for the CUR sketching model. Theo-
rems 3 and 4 below are stated in terms of the fol-
lowing upper bounds:

CΩ ≥
∣∣∣∣∣∣Ω2Ω†1

∣∣∣∣∣∣
2
, CΨ ≥

∣∣∣∣∣∣Ψ2Ψ†1

∣∣∣∣∣∣
2
. (8)

Singular Value Bound. We start with a bound on
the individual singular values of the reconstructed
matrix.

Theorem 3. Let τj = σp+1/σj. Then,

σj(Ã) ≥
σj
(
1− τ3

j CΩ CΨ
)√

1 + τ2
j C2

Ω

√
1 + τ2

j C2
Ψ

, for all 1 ≤ j ≤ k.

Error Norm Bounds. Next, we present error
bounds in the spectral and Frobenius norms.

Theorem 4.∣∣∣∣∣∣A− Ãk

∣∣∣∣∣∣2
2
≤ σ2

k+1 + k (CΩ + CΨ)
2
σ2
p+1,∣∣∣∣∣∣A− Ãk

∣∣∣∣∣∣2
F
≤

 ρ∑
j=k+1

σ2
j

+ k (CΩ + CΨ)
2
σ2
p+1.

Discussion
A good CUR decomposition heavily depends on how
the sketch matrices are chosen; Theorems 3 and 4
point out the connection between sketch matrices
and the quality of the CUR decomposition through
quantities CΩ and CΨ.

We call Theorems 3 and 4 spectral gap error bounds
because they exhibit a surprisingly strong connec-
tion between the rate at which the singular values of
matrix A might decay and the quality of the CUR
decomposition. For the sake of argument assume
for the moment that CΩ = O(1) and CΨ = O(1).
When singular values of A decay rapidly, as they
often do in many large data matrices, we can expect
τj � 1 for a choice of p that is somewhat larger
than k. Theorem 3 suggests that the leading singu-
lar values of Ã, σj(Ã) for 1 ≤ j ≤ k, differ from
the corresponding singular values of A by a negligi-
ble relative amount. Due to our spectral gap error
bound method, this holds even if all of the individual
spectral gaps are small. Similarly, since ρ∑

j=k+1

σ2
j

 ≥ σ2
k+1 � σ2

p+1

when singular values rapidly decay, Theorems 1
and 4 suggest that the approximation error in Ã
differs from that in Ak, the best rank-k approxima-
tion, by a negligible additional amount in both the
Frobenius norm and spectral norm.

In the remainder of this section, we show that the
UCS algorithm from [1] and two sampling algorithms
are able to bring both CΩ and CΨ under effective
control in their magnitude, leading to high quality
CUR decompositions. It is important to note that
when using the modified Nyström method, the above
bounds still hold with CΨ := CΩ.

3.3 Bounds of the Deterministic
Unweighted Column Selection

We apply Theorems 3 and 4 to bound the singular
value errors and the low-rank approximation error
in the spectral and Frobenius norms for the matrix
constructed by Algorithm 1.

Theorem 5. (Unweighted Column Selection)
Let Πr and Πc be constructed with Algorithm 1,
then Theorems 3 and 4 hold with

C−1
Ω =

√
c−√p√

(
√
n− p+

√
c)2 + (

√
c−√p)2

,

C−1
Ψ =

√
r −√p√

(
√
m− p+

√
r)2 + (

√
r −√p)2

.

When applying the result above to the Nyström
method (i.e. R := CT ), one simply needs to ignore
the discussion of sampling rows. Simple algebra re-
veals as c and r increase, CΩ and CΨ will decrease
as well. This suggests a tradeoff between controlling
the C terms and improving the spectral gap τk+1.

3.4 Stochastic Bounds of Sampling Based
Algorithms

We apply Theorems 3 and 4 to bound errors in the
random sampling methods. µr and µc in Theorem 6
refer to the row coherence in equation (2) and col-
umn coherence in equation (3). The failure proba-
bilities below are squared for the CUR because the
rows and columns are sampled independently. When
applying the two theorems below to the Nyström
method (i.e. R := CT ), one needs to ignore the dis-
cussion of sampling rows and to take the square root
of the failure probability by the point above.

Theorem 6. (Uniform Sampling) [8]. Let Πr ∈
Rr×m,Πc ∈ Rn×c be sketching matrices correspond-
ing to sampling rows and columns uniformly at ran-

5
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dom, respectively. Fix a failure probability 0 < δ � 1
and an accuracy factor ε ∈ (0, 1). If

r ≥ 2ε−2µrp ln (p/δ) , c ≥ 2ε−2µcp ln (p/δ) ,

then Theorems 3 and 4 hold with

CΩ =

√
n

(1− ε) c
, CΨ =

√
m

(1− ε) r

with probability at least (1− δ)2.

Theorem 7. (Leverage Score Sampling) [7] Let
Πr ∈ Rr×m,Πc ∈ Rn×c be generated with probability
distributions based on the row leverage scores {lrj}
in equation (2) and column leverage scores {lcj} in
equation (3):

prj =
lrj
p

and pcj =
lcj
p

for an accuracy factor ε ∈ (0, 1). If

r ≥ 400ε−2p ln (p) , c ≥ 400ε−2p ln (p) ,

then Theorems 3 and 4 hold with

CΩ =

√
1

1− ε
, CΨ =

√
1

1− ε

with probability at least 0.92 = 0.81.

4 Numerical Results

In this section, we provide a summary of our em-
pirical evaluation. We start in Section 4.1 with a
description of our data sets and our evaluation met-
rics; then, in Section 4.2, we show how oversam-
pling affects reconstruction error for deterministic
and randomized CUR on two data sets with differ-
ent spectrum properties; and then, in Section 4.3,
we compare our StableCUR algorithm using input
matrices determined by the deterministic UCS algo-
rithm with other related CUR decompositions.

4.1 Data Sets

We use data sets in [9], which include matrices con-
structed from the bag-of-words data (Dexter) and
a Gaussian Radial Basis Function (RBF) Kernel
(Abalone). The description of data sets is presented
in Table 1. Here, m and n are numbers of columns
and rows of the data matrix, %nnz is the percent-
age of number of non-zero entries, k is the target
rank, p = 2k, and µc and µr are the coherence
of the rows and columns of A respectively. Re-
call that, for a set of data points x1, . . . ,xn ∈ Rd,

the Gaussian RBF Kernel matrix Aσ is given by

Aσ
ij = exp

(
−‖xi−xj‖22

σ2

)
.

These data matrices are chosen because of their dif-
ferent spectral decay properties. In particular, by
adjusting the σ in the Gaussian RBF Kernel, we
can change the speed of the decay in a controlled

manner. Observe that
σp(A)
σk(A) (which is the quantity

that enters our spectral gap error bounds) increases
from 0.156 to 0.801 as σ is decreased from 5 to 0.1.
In more detail, Figure 3 shows that for the Abalone
kernel matrix, decreasing values of σ from 5 to 0.1
slows down the singular value decay, reducing the
domination by the top-k eigenspace. Table 1 shows
that when σ = 0.1, the best rank-20 approximation
is far from the original matrix (and thus low-rank
approximation cannot be expected to yield good re-
sults), while for σ = 5, the matrix is very well ap-
proximated by a rank-20 matrix.

In our empirical evaluation, we consider the follow-
ing measures to compare different CUR algorithms:

• σk(CUR)/σk(A), kth singular value ratio
• ‖A−CUR‖F /‖A−Ak‖F , Frobenius norm er-

ror
• ‖A−(CUR)k‖F /‖A−Ak‖F , rank-k truncated

Frobenius norm error
• ‖A−CUR‖2/‖A−Ak‖2, spectrum norm error
• ‖A− (CUR)k‖2/‖A−Ak‖2, rank-k truncated

spectrum norm error.

In addition, the legends in the following plots corre-
spond to the four CUR algorithms we consider:

• RandLeverage: CUR Decomposition of [7]
constructed from Leverage Score Sampling
• RandUniform: CUR Decomposition con-

structed from Uniform Sampling
• NearOptimal: CUR via the Near-Optimal

Column Selection Algorithm of [3, 16]
• StableCUR: Our StableCUR Algorithm.

4.2 Oversampling Experiments

Here, we test how the spectrum gap can affect the
performance of StableCUR and RandLeverage.
Our main results are presented in Figures 4 and 5.
We choose target rank k = 20, c = r = 80 and vary
p from k to 2k. Recall from our deterministic struc-
tural results from Section 3 that increasing p will
decrease σp+1 (A) and thus improve the approxima-
tion accuracy. However, in Theorems 5 and 7, we
showed that increasing p may increase CΩ and CΨ.
By our bounds, for matrices whose singular values
decay rapidly, an increase in p could be beneficial.

6
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Table 1: Dataset Summary.

Data Set m n %nnz k
‖A‖2F
‖A‖22

100 ‖A−Ak‖F
‖A‖F µc µr

σp(A)
σk(A)

Abalone(σ = 5) 4177 4177 100 20 1.09 0.17 10.6 10.6 0.156
Abalone(σ = 2) 4177 4177 100 20 1.88 4.39 2.67 2.67 0.285
Abalone(σ = 0.2) 4177 4177 84.6 20 14.9 79.6 17.6 17.6 0.62
Abalone(σ = 0.1) 4177 4177 40.74 20 174.7 97.47 59.9 59.9 0.801
Dexter 2000 20000 0.48 10 7.16 88.6 197.2 1945 0.806

Figure 4 shows the effects of different values of p
on the Frobenius norm reconstruction error. For
the Abalone kernel matrix with σ = 5, both Sta-
bleCUR and RandLeverage behave better as p
increases. On the other hand, when σ = 0.1, the re-
construction error is much larger and there is little
performance gain as p increases.

Figure 5 shows the effects of different values of p on
the spectral norm reconstruction error. These plots
are qualitatively similar to the Frobenius norm error:
for the Abalone kernel matrix with σ = 5, increasing
p reduces reconstruction error for both algorithms,
while, when σ = 0.1, increasing p would not improve
StableCUR. Note that for RandLeverage, an in-
crease in p could even decrease the reconstruction
accuracy. The reason is likely that we do not have
effective control on CΩ and CΨ as we increase p.
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Figure 3: Singular value decay of the Abalone kernel
matrices with different σ’s. The reported value is the
ratio between σp and σk, where k = 20 and p varies
from 20 to 40.

4.3 Comparing Different CUR Methods

For completeness, we now compare the performance
of different CUR algorithms (RandLeverage,
RandUniform, NearOptimal, and Stable-
CUR) on data matrices with the same number of
columns and rows. To take advantage of the spec-
trum gap, we choose oversampling parameter p =
k + 10 for a matrix (Figure 6) with rapid singular

value decay. For matrices (Figures 7 and 8) with
slow singular value decay, where there is little bene-
fit to oversample, we choose p = k.

Figure 6 shows the performance of the algorithms
on the Abalone matrix with σ = 5, whose singu-
lar values decay rapidly. Since Ak contains most of
the information, low rank approximation is a reason-
able model. The reconstructed matrix is able to cap-
ture most singular values, and the residual errors in
both spectral and Frobenius norm decrease rapidly
as more columns and rows are sampled. Since the
leverage scores are fairly uniform, i.e., the coherence
is fairly small, RandUniform performs well in this
case, although it is still worse than other algorithms.

Figure 7 shows the performance of different algo-
rithms on the Abalone matrix with σ = 0.1, whose
singular values decay slowly. Since Ak only con-
tains a small portion of information of A, the curves
are flatter in this case. Since the coherence is large,
RandUniform performs poorly and RandLever-
age performs best under most metrics. However,
sampling with more columns and rows only in-
creases approximation accuracy marginally, because
the leverage score distribution is extremely imbal-
anced due to the high coherence of the matrix.

Figure 8 shows performance of different algorithms
on the Dexter data matrix. This matrix is “worse”
than the Abalone kernel matrix with σ = 5 because
of its slow singular value decay and large coherence,
and our empirical results are consistent with this.

5 Conclusion

We have introduced novel spectral gap error bounds
and demonstrated both theoretically and empirically
that only a constant amount of oversampling rela-
tive to the target rank is needed for matrices with
rapidly decaying singular values. We presented a
stable CUR algorithm, StableCUR, and combined it
with the UCS algorithm to create a stable, efficient,
and competitive CUR algorithm that takes advan-
tage of these error bounds.
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Figure 4: Reconstruction error in Frobenius norm for StableCUR and RandLeverage running on Abalone
kernel matrix with σ = 5 and 0.1. When σ = 5, both algorithms perform better as we increase p. When
σ = 0.1, the reconstruction errors are less consistent.

20 25 30 35 40
0.004

0.006

0.008

0.01

0.012

0.014

0.016

σ = 5

value of p

||A
−

C
U

R
|| 2/||

A
−

A
k|| 2

 

 

StableCUR

20 25 30 35 40
0

0.005

0.01

0.015

0.02

σ = 5

value of p

||A
−

C
U

R
|| 2/||

A
−

A
k|| 2

 

 

RandLeverage

20 25 30 35 40
0.045

0.05

0.055

0.06

σ = 0.1

value of p

||A
−

C
U

R
|| 2/||

A
−

A
k|| 2

 

 

StableCUR

20 25 30 35 40

0.04

0.045

0.05

0.055

0.06

σ = 0.1

value of p

||A
−

C
U

R
|| 2/||

A
−

A
k|| 2

 

 

RandLeverage

Figure 5: Reconstruction error in spectral norm for StableCUR and RandLeverage running on Abalone
kernel matrix with σ = 5 and 0.1. The results are very similar to figure 5.
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Figure 6: Results of algorithms comparison on RBF kernel(σ = 5) of the Abalone data set. In this matrix,
singular values decay very fast, which results in rapid decrease in residual errors and rapid increase in singular
value ratio for all algorithms.
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Figure 7: Results of algorithms comparison on RBF kernel(σ = 0.1) of the Abalone data set. In this matrix,
singular values decay very slowly. All curves are flatter than the ones in Figure 6.
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Figure 8: Results of algorithms comparison on Dexter data matrix. This is a non-symmetric matrix with
slow decay in its singular values. The performance of algorithms are similar to the ones in Figure 7.
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