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Abstract

We present a simple and scalable algorithm for maximum-margin estimation of structured
output models, including an important class of Markov networks and combinatorial models.
We formulate the estimation problem as a convex-concave saddle-point problem that allows
us to use simple projection methods based on the dual extragradient algorithm (Nesterov,
2003). The projection step can be solved using dynamic programming or combinatorial
algorithms for min-cost convex flow, depending on the structure of the problem. We show
that this approach provides a memory-efficient alternative to formulations based on reduc-
tions to a quadratic program (QP). We analyze the convergence of the method and present
experiments on two very different structured prediction tasks: 3D image segmentation and
word alignment, illustrating the favorable scaling properties of our algorithm.1

1. Introduction

Structured prediction problems are classification or regression problems in which the output
variables (the class labels or regression responses) are interdependent. These dependencies
may reflect sequential, spatial, recursive or combinatorial structure in the problem domain,
and capturing these dependencies is often as important for the purposes of prediction as
capturing input-output dependencies. In addition to modeling output correlations, we may
wish to incorporate hard constraints between variables. For example, we may seek a model
that maps descriptions of pairs of structured objects (shapes, strings, trees, etc.) into
alignments of those objects. Real-life examples of such problems include bipartite matchings
in alignment of 2D shapes (Belongie et al., 2002) and word alignment of sentences from a
source language to a target language in machine translation (Matusov et al., 2004) or non-
bipartite matchings of residues in disulfide connectivity prediction for proteins (Baldi et al.,
2004). In these examples, the output variables encode presence of edges in the matching
and obey hard one-to-one matching constraints. The prediction problem in such situations

1. Preliminary version of some of this work will appear in Advances in Neural Information Processing
Systems 19, 2005 and Empirical Methods in Natural Language Processing, 2005.
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is often solved via efficient combinatorial optimization such as finding the maximum weight
matching, where the model provides the appropriate edge weights.

Thus in this paper we define the term structured output model very broadly, as a compact
scoring scheme over a (possibly very large) set of combinatorial structures and a method for
finding the highest scoring structure. For example, when a probabilistic graphical model is
used to capture dependencies in a structured output model, the scoring scheme is specified
via a factorized probability distribution for the output variables conditional on the input
variables, and the search involves some form of generalized Viterbi algorithm. More broadly,
in models based on combinatorial problems, the scoring scheme is usually a simple sum of
weights associated with vertices, edges, or other components of a structure; these weights
are often represented as parametric functions of the inputs. Given training data consisting
of instances labeled by desired structured outputs and a set of features that parameterize
the scoring function, the (discriminative) learning problem is to find parameters such that
the highest scoring outputs are as close as possible to the desired outputs.

In the case of structured prediction based on graphical models, which encompasses most
work to date on structured prediction, two major approaches to discriminative learning have
been explored: (1) maximum conditional likelihood (Lafferty et al., 2001, 2004) and (2)
maximum margin (Collins, 2002; Altun et al., 2003; Taskar et al., 2003). Both approaches
are viable computationally for restricted classes of graphical models. In the broader context
of the current paper, however, only the maximum-margin approach appears to be viable.
In particular, it has been shown that maximum-margin estimation can be formulated as
a polynomial-size quadratic program (QP) in several cases of interest (Taskar et al., 2004,
2005a); such results are not available for conditional likelihood. Moreover, it is possible to
find interesting subfamilies of graphical models for which maximum-margin methods are
provably tractable whereas likelihood-based methods are not. For example, for the Markov
random fields that arise in object segmentation problems in vision (Kumar and Hebert, 2003;
Anguelov et al., 2005) the task of finding the most likely assignment reduces to a min-cut
problem. In these prediction tasks, the problem of finding the highest scoring structure is
tractable, while computing the partition function is #P-complete. Essentially, maximum-
likelihood estimation requires the partition function, while maximum-margin estimation
does not, and thus remains tractable.

While the reduction to a tractable convex program such as a QP is a significant step
forward, it is unfortunately not the case that off-the-shelf QP solvers necessarily provide
practical solutions to structured prediction problems. Indeed, despite the reduction to a
polynomial number of variables, off-the-shelf QP solvers tend to scale poorly with problem
and training sample size for these models. The number of variables is still large and the
memory needed to maintain second-order information (for example, the inverse Hessian) is
a serious practical bottleneck.

To solve the largest-scale machine learning problems, researchers have often found it ex-
pedient to consider simple gradient-based algorithms, in which each individual step is cheap
in terms of computation and memory (Platt, 1999; LeCun et al., 1998). Examples of this
approach in the structured prediction setting include the Structured Sequential Minimal
Optimization algorithm (Taskar et al., 2003; Taskar, 2004) and the Structured Exponenti-
ated Gradient algorithm (Bartlett et al., 2004). These algorithms are first-order methods
for solving QPs arising from low-treewidth Markov random fields and other decomposable
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models. In these restricted settings these methods can be used to solve significantly larger
problems than can be solved with off-the-shelf QP solvers. These methods are, however,
limited in scope in that they rely on dynamic programming to compute essential quanti-
ties such as gradients. They do not extend to models where dynamic programming is not
applicable, for example, to problems such as matchings and min-cuts.

In this paper, we present a solution methodology for structured prediction that encom-
passes a broad range of combinatorial optimization problems, including matchings, min-cuts
and other network flow problems. There are two key aspects to our methodology. The first
is that we take a novel approach to the formulation of structured prediction problems, for-
mulating them as saddle-point problems. This allows us to exploit recent developments
in the optimization literature, where simple gradient-based methods have been developed
for solving saddle-point problems (Nesterov, 2003). Moreover, we show that the key com-
putational step in these methods—a certain projection operation—inherits the favorable
computational complexity of the underlying optimization problem. This important result
makes our approach viable computationally. In particular, for decomposable graphical mod-
els, the projection step is solvable via dynamic programming. For matchings and min-cuts,
projection involves a min-cost quadratic flow computation, a problem for which efficient,
highly-specialized algorithms are available.

The paper is organized as follows. In Section 2 we present an overview of structured pre-
diction, focusing on three classes of tractable optimization problems. Section 3 shows how
to formulate the maximum-margin estimation problem for these models as a saddle-point
problem. In Section 4 we discuss the dual extragradient method for solving saddle-point
problems and show how it specializes to our setting. We derive a memory-efficient version of
the algorithm that requires storage proportional to the number of parameters in the model
and is independent of the number of examples in Section 5. In Section 6 we illustrate the ef-
fectiveness of our approach on two very different large-scale structured prediction tasks: 3D
image segmentation and word alignment in natural language translation. Finally, Section 7
presents our conclusions.

2. Structured output models

We begin by discussing three special cases of the general framework that we present sub-
sequently: (1) tree-structured Markov networks, (2) Markov networks with submodular
potentials, and (3) a bipartite matching model. Despite significant differences in the formal
specification of these models, they share the property that in all cases the problem of finding
the highest-scoring output can be formulated as a linear program (LP).

2.1 Tree-structured Markov networks

For simplicity of notation, we focus on tree networks, noting in passing that the extension to
hypertrees is straightforward. Given N variables, y = {y1, . . . , yN}, with discrete domains
yj ∈ Dj = {α1, . . . , α|Dj |}, we define a joint distribution over Y = D1 × . . . ×DN via

P (y) ∝
∏

j∈V

φj(yj)
∏

jk∈E

φjk(yj , yk),
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where (V = {1, . . . , N}, E ⊂ {jk : j < k, j ∈ V, k ∈ V}) is an undirected graph, and where
{φj(yj), j ∈ V} are the node potentials and {φjk(yj , yk), jk ∈ E} are the edge potentials. We
can find the most likely assignment, arg max

y
P (y), using the Viterbi dynamic programming

algorithm for trees. We can also find it using a standard linear programming formulation
as follows. We introduce variables zjα to denote indicators 1I(yj = α) for all variables
j ∈ V and their values α ∈ Dj . Similarly, we introduce variables zjkαβ to denote indicators
1I(yj = α, yk = β) for all edges jk ∈ E and the values of their nodes, α ∈ Dj , β ∈ Dk. We
can express log P (y) (up to the normalization term) as a linear function of these variables
as follows:

max
0≤z≤1

∑

j∈V

∑

α∈Dj

zjα log φj(α) +
∑

jk∈E

∑

α∈Dj ,β∈Dk

zjkαβ log φjk(α, β) (1)

s.t.
∑

α∈Dj

zjα = 1, ∀j ∈ V;
∑

α∈Dj ,β∈Dk

zjkαβ = 1, ∀jk ∈ E ; (2)

∑

α∈Dj

zjkαβ = zkβ, ∀jk ∈ E , β ∈ Dk;
∑

β∈Dk

zjkαβ = zjα, ∀jk ∈ E , α ∈ Dj , (3)

where (2) expresses normalization constraints and (3) captures marginalization constraints.
This LP has integral optimal solutions if E is a forest (Chekuri et al., 2001; Wainwright
et al., 2002; Chekuri et al., 2005). In networks of general topology, however, the optimal
solution can be fractional (as expected, since the problem is NP-hard). Other important
exceptions can be found, however, specifically by focusing on constraints on the potentials
rather than constraints on the topology. We discuss one such example in the following
section.

2.2 Markov networks with submodular potentials

We consider a special class of Markov networks, common in vision applications, in which
inference reduces to a tractable min-cut problem (Greig et al., 1989; Kolmogorov and Zabih,
2002). We assume that (1) all variables are binary (Dj = {0, 1}), and (2) all edge potentials
are“regular” (or submodular):

log φjk(0, 0) + log φjk(1, 1) ≥ log φjk(1, 0) + log φjk(0, 1), ∀jk ∈ E . (4)

Such potentials prefer assignments where connected nodes have the same label, that is,
yj = yk. This notion of regularity can be extended to potentials over more than two
variables (Kolmogorov and Zabih, 2002). These assumptions ensure that the LP in Eq. (1)
has integral optimal solutions (Chekuri et al., 2001; Kolmogorov and Wainwright, 2005;
Chekuri et al., 2005). Similar kinds of networks (defined also for non-binary variables and
non-pairwise potentials) were called “associative Markov networks” by Taskar et al. (2004);
Anguelov et al. (2005), who used them for object segmentation and hypertext classification.

In figure-ground segmentation (see Fig. 1a), the node potentials capture local evidence
about the label of a pixel or range scan point. Edges usually connect nearby pixels in an
image, and serve to correlate their labels. Assuming that such correlations tend to positive

(connected nodes tend to have the same label) leads us to simplify the form of edge potentials
to be φjk(yj , yk) = exp{−sjk1I(yj 6= yk)}, where sjk is a nonnegative penalty for assigning
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Figure 1: Structured prediction applications: (a) 3D figure-ground segmentation; (b) Word
alignment in machine translation.

yj and yk different labels. Note that such potentials are regular if sjk ≥ 0. Expressing node

potentials as φj(yj) = exp{sjyj}, we have P (y) ∝ exp
{∑

j∈V sjyj −
∑

jk∈E sjk1I(yj 6= yk)
}

.

Under this restriction of the potentials we obtain the following (simpler) LP:

max
0≤z≤1

∑

j∈V

sjzj −
∑

jk∈E

sjkzjk (5)

s.t. zj − zk ≤ zjk, zk − zj ≤ zjk, ∀jk ∈ E .

In this LP, continuous variables zj correspond to the binary variables yj . Note that the
constraints can be equivalently expressed as |zj − zk| ≤ zjk. Because sjk is positive, zjk =
|zk − zj | at the maximum, which is equivalent to 1I(zj 6= zk) if the zj , zk variables are
binary. An integral optimal solution always exists, since the constraint matrix is totally
unimodular (Schrijver, 2003).

We can parameterize the node and edge potentials in terms of user-provided features
xj and xjk associated with the nodes and edges. In particular, in 3D range data, xj might
involve spin-image features or spatial occupancy histograms of a point j, while xjk might
include the distance between points j and k, the dot-product of their normals, etc. The
simplest model of dependence is a linear combination of features: sj = w>

n fn(xj) and
sjk = w>

e fe(xjk), where wn and we are node and edge parameters, and fn and fe are
node and edge feature mappings, of dimension dn and de, respectively. To ensure non-
negativity of sjk, we assume the edge features fe to be nonnegative and restrict we ≥ 0.
This constraint is incorporated into the learning formulation we present below. We assume
that the feature mappings f are provided by the user and our goal is to estimate parameters
w from labeled data. We abbreviate the score assigned to a labeling y for an input x as
w>f(x,y) =

∑
j yjw

>
n fn(xj) −

∑
jk∈E yjkw

>
e fe(xjk), where yjk = 1I(yj 6= yk).
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2.3 Matchings

Consider modeling the task of word alignment of parallel bilingual sentences (Fig. 1b) as
a maximum weight bipartite matching problem in a graph, where the nodes V = V s ∪ V t

correspond to the words in the “source” sentence (V s) and the “target” sentence (V t) and
the edges E = {jk : j ∈ Vs, k ∈ V t} correspond to alignments between them. For simplicity,
assume that each word aligns to one or zero words in the other sentence. The edge weight
sjk represents the degree to which word j in one sentence can translate into the word k in
the other sentence. Our objective is to find an alignment that maximizes the sum of edge
scores. We represent a matching using a set of binary variables yjk that are set to 1 if word
j is assigned to word k in the other sentence, and 0 otherwise. The score of an assignment
is the sum of edge scores: s(y) =

∑
jk∈E sjkyjk. The maximum weight bipartite matching

problem, arg max
y∈Y s(y), can be found by solving the following LP:

max
0≤z≤1

∑

jk∈E

sjkzjk (6)

s.t.
∑

j∈Vs

zjk ≤ 1, ∀k ∈ V t;
∑

k∈Vt

zjk ≤ 1, ∀j ∈ Vs.

where again the continuous variables zjk correspond to the relaxation of the binary variables
yjk. As in the min-cut problem, this LP is guaranteed to have integral solutions for any
scoring function s(y) (Schrijver, 2003).

For word alignment, the scores sjk can be defined in terms of the word pair jk and input
features associated with xjk. We can include the identity of the two words, relative position
in the respective sentences, part-of-speech tags, string similarity (for detecting cognates),
etc. We let sjk = w>f(xjk) for some user-provided feature mapping f and abbreviate
w>f(x,y) =

∑
jk yjkw

>f(xjk).

2.4 General structure

More generally, we consider prediction problems in which the input x ∈ X is an arbitrary
structured object and the output is a vector of values y = (y1, . . . , yLx

) encoding, for
example, a matching or a cut in the graph. We assume that the length Lx and the structure
encoded by y depend deterministically on the input x. In our word alignment example, the
output space is defined by the length of the two sentences. Denote the output space for a
given input x as Y(x) and the entire output space as Y =

⋃
x∈X Y(x).

Consider the class of structured prediction models H defined by the linear family:

hw(x) = arg max
y∈Y(x)

w>f(x,y), (7)

where f(x,y) is a vector of functions f : X × Y 7→ IRn. This formulation is very general.
Indeed, it is too general for our purposes—for many f ,Y pairs, finding the optimal y is
intractable. We specialize to the class of models in which the optimization problem in
Eq. (7) can be solved in polynomial time via convex optimization; this is still a very large
class of models. Beyond the examples discussed here, it includes weighted context free and
dependency grammars (Manning and Schütze, 1999) and string edit distance models for
sequence alignment (Durbin et al., 1998).
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3. Large margin estimation

We assume a set of training instances S = {(xi,yi)}
m
i=1, where each instance consists of

a structured object xi (such as a graph) and a target solution yi (such as a matching).
Consider learning the parameters w in the conditional likelihood setting. We can define
Pw(y | x) = 1

Zw(x) exp{w>f(x,y)}, where Zw(x) =
∑

y
′

i∈Y(x) exp{w>f(xi,y
′
i)}, and max-

imize the conditional log-likelihood
∑

i log Pw(yi | xi), perhaps with additional regular-
ization of the parameters w. However, computing the partition function Zw(x) is #P-
complete for the two structured prediction problems we presented above, matchings and
min-cuts (Valiant, 1979; Jerrum and Sinclair, 1993).

We thus retreat from conditional likelihood and consider the max-margin formulation
of (Taskar et al., 2003). In this formulation we directly seek to find parameters w such that:

yi = arg max
y
′

i∈Yi

w>f(xi,y
′
i), ∀i,

where Yi = Y(xi).The solution space Yi depends on the structured object xi; for example,
the space of possible matchings depends on the precise set of nodes and edges in the graph.

As in univariate prediction, we measure the error of prediction using a loss function
`(yi,y

′
i). To obtain a convex formulation, we upper bound the loss `(yi, hw(xi)) using

the hinge function: maxy
′

i∈Yi
[w>fi(y

′
i) + `i(y

′
i) − w>fi(yi)], where `i(y

′
i) = `(yi,y

′
i), and

fi(y
′
i) = f(xi,y

′
i). Minimizing this upper bound will force the true structure yi to be optimal

with respect to w for each instance i:

min
w∈W

∑

i

max
y
′

i∈Yi

[w>fi(y
′
i) + `i(y

′
i)] − w>fi(yi), (8)

where W is the set of allowed weights w. We assume that the weight space W is a convex
set, typically a norm ball {w : ||w||p ≤ γ} with p = 1, 2 and a regularization parameter
γ. In the case that W = {w | ||w||2 ≤ γ}, this formulation is equivalent to the standard
large margin formulation using slack variables ξ and slack penalty C (cf. Taskar et al.,
2003), for some suitable values of C depending on γ.2 In the case of submodular potentials,
there are additional linear constraints on the edge potentials. In the setting of Eq. (5), we
simply constrain we ≥ 0. For general submodular potentials, we can parameterize the log
of the edge potential using four sets of edge parameters, we00,we01,we10,we11, as follows:
log φjk(α, β) = w>

eαβf(xjk). Assuming, as before, that the edge features are nonnegative,
the regularity of the potentials can be enforced via a linear constraint: we00 + we11 ≥
we10 + we01, where the inequality should be interpreted componentwise.

The key to solving Eq. (8) efficiently is the loss-augmented inference problem,

max
y
′

i∈Yi

[w>fi(y
′
i) + `i(y

′
i)]. (9)

This optimization problem has precisely the same form as the prediction problem whose
parameters we are trying to learn—maxy

′

i∈Yi
w>fi(y

′
i)—but with an additional term cor-

responding to the loss function. Tractability of the loss-augmented inference thus depends

2. The correspondence can be seen as follows: let w
∗(C) be a solution to the optimization problem with

slack penalty C and define γ(C) = ||w∗(C)||. Then w
∗ is also a solution to Eq. (8). Conversely, we

can invert the mapping γ(·) to find those values of C (possibly non-unique) that give rise to the same
solution as Eq. (8) for a specific γ.
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not only on the tractability of maxy
′

i∈Yi
w>fi(y

′
i), but also on the form of the loss term

`i(y
′
i). A natural choice in this regard is the Hamming distance, which simply counts the

number of variables in which a candidate solution y′
i differs from the target output yi. In

general, we need only assume that the loss function decomposes over the variables in yi.
In particular, for word alignment, we use weighted Hamming distance, which counts the

number of variables in which a candidate matching y′
i differs from the target alignment yi,

with different cost for false positives (c+) and false negatives (c-):

`(yi,y
′
i) =

∑

jk∈Ei

[
c-yi,jk(1 − y′i,jk) + c+ y′i,jk(1 − yi,jk)

]
(10)

=
∑

jk∈Ei

c-yi,jk +
∑

jk∈Ei

[c+ − (c- + c+)yi,jk]y
′
i,jk,

where yi,jk indicates the presence of edge jk in example i and Ei is the set of edges in
example i. The loss-augmented matching problem can then be written as an LP similar
to Eq. (6) (without the constant term

∑
jk c-yi,jk):

max
0≤zi≤1

∑

jk∈Ei

zi,jk[w
>f(xi,jk) + c+ − (c- + c+)yi,jk]

s.t.
∑

j∈Vs
i

zi,jk ≤ 1, ∀k ∈ V t
i ;

∑

k∈Vt
i

zi,jk ≤ 1, ∀j ∈ Vs
i ,

where f(xi,jk) is the vector of features of the edge jk in example i and Vs
i and V t

i are the
nodes in example i. As before, the continuous variables, zi,jk, correspond to the binary
values y′i,jk.

Generally, suppose we can express the prediction problem as an LP:

max
y
′

i∈Yi

w>fi(y
′
i) = max

zi∈Zi

w>Fizi,

where
Zi = {zi : Aizi ≤ bi, 0 ≤ zi ≤ 1}, (11)

for appropriately defined Fi,Ai,bi. Then we have a similar LP for the loss-augmented
inference for each example i:

max
y
′

i∈Yi

w>fi(y
′
i) + `i(y

′
i) = di + max

zi∈Zi

(F>
i w + ci)

>zi, (12)

for appropriately defined di, ci. For the matching case, di =
∑

jk c-yi,jk is the constant
term, Fi is a matrix that has a column of features f(xi,jk) for each edge jk in example i, ci

is the vector of the loss terms c+ − (c- + c+)yi,jk. Let z = {z1, . . . , zm}, Z = Z1 × . . .×Zm.
With these definitions, we have:

min
w∈W

max
z∈Z

∑

i

(
w>Fizi + c>i zi − w>fi(yi)

)
. (13)

where the constant term
∑

i di was omitted in the objective function. The only difference
from our initial formulation Eq. (8) is that we have created a concise continuous optimization
problem by replacing the discrete y′

i’s with continuous zi’s.
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When the prediction problem is intractable (for example, in general Markov networks or
tripartite matchings), we can use a convex relaxation (for example, a linear or semidefinite
program) to upper bound maxy

′

i∈Yi
w>fi(y

′
i) and obtain an approximate maximum-margin

formulation. This is the approach taken in (Taskar et al., 2003) for general Markov networks
using the LP in Eq. (1).

To solve (13), we could proceed by making use of Lagrangian duality. This approach,
explored in Taskar et al. (2004, 2005a), yields a joint convex optimization problem. If the
weight space W is described by linear and convex quadratic constraints, the result is a
convex quadratic program which can be solved using a generic QP solver.

We briefly outline this approach below, but in this paper, we take a different tack,
solving the problem in its natural saddle-point form. As we discuss in the following section,
this approach allows us to exploit the structure of W and Z separately, allowing for efficient
solutions for a wider range of parameter and structure spaces. It also opens up alternatives
with respect to numerical algorithms.

Before moving on to solution of the saddle-point problem, we consider the joint convex
form when the feasible set has the form of (11) and the loss-augmented inference problem
is a LP, as in (12). Using commercial convex optimization solvers for this formulation will
provide us with a comparison point with our saddle-point solver. We now proceed to present
this alternative form.

To transform the saddle-point form of (13) into a standard convex optimization form,
we take the dual of the individual loss-augmented LPs (12):

max
zi∈Zi

(F>
i w + ci)

>zi = min
(λi,µi)∈Λi(w)

b>
i λi + 1>µi (14)

where Λi(w) = {(λi, µi) ≥ 0 | F>
i w + ci ≤ A>

i λi + µi} defines the feasible space for the
dual variables λi and µi. Substituting back in equation (13) and writing λ = (λ1, . . . , λm),
µ = (µ1, . . . , µm), we obtain (omitting the constant

∑
i di):

min
w∈W, (λ,µ)≥0

∑

i

(
b>

i λi + 1>µi − w>fi(yi)
)

(15)

s.t. F>
i w + ci ≤ A>

i λi + µi i = 1, . . . , m.

If W is defined by linear and convex quadratic constraints, the above optimization problem
can be solved using standard commercial solvers. The number of variables and constraints
in this problem is linear in the number of the parameters and the training data (for example
nodes and edges).

4. Saddle-point problems and the dual extragradient method

We begin by establishing some notation and definitions. Denote the objective of the saddle-
point problem in (13) by:

L(w, z) ≡
∑

i

w>Fizi + c>i zi − w>fi(yi).

L(w, z) is bilinear in w and z, with gradient given by: ∇wL(w, z) =
∑

i Fizi − fi(yi) and
∇zi

L(w, z) = F>
i w + ci.
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We can view the problem as a zero-sum game between two players, w and z. Consider
a simple iterative improvement method based on gradient projections:

wt+1 = πW(wt − η∇wL(wt, zt)); zt+1
i = πZi

(zt
i + η∇zi

L(wt, zt)), (16)

where η is a step size and πV(v) = arg min
v′∈V ||v−v′||2 denotes the Euclidean projection

of a vector v onto a convex set V. In this simple iteration, each player makes a small
best-response improvement without taking into account the effect of the change on the
opponent’s strategy. This usually leads to oscillations, and indeed, this method is generally
not guaranteed to converge for bilinear objectives for any step size (Korpelevich, 1976; He
and Liao, 2002). One way forward is to attempt to average the points (wt, zt) to reduce
oscillation. We pursue a different approach that is based on the extragradient method
of Korpelevich (1976) and its extension by Nesterov (2003). Before we present the algorithm,
we introduce several relevant facts and definitions.

A feasible point (w∗, z∗), with w∗ ∈ W, z∗ ∈ Z, is a solution of Eq. (13) if and only if

∇wL(w∗, z∗)>(w − w∗) ≥ 0, ∀w ∈ W;

∇zi
L(w∗, z∗)>(zi − z∗i ) ≤ 0, ∀i, ∀zi ∈ Zi.

Let us combine w and z into one vector, u = (uw,uz) and define the joint feasible space
U = W ×Z. Note that U is convex since it is a direct product of convex sets. We denote
the (affine) gradient operator on this joint space as




∇wL(w, z)
−∇z1

L(w, z)
...

−∇zmL(w, z)


 =




0 F1 · · · Fm

−F>
1

... 0
−F>

m







w

z1
...

zm


 −




∑
i fi(yi)
c1
...

cm


 = Fu − a.

With these definitions, the optimality condition for a point u∗ ∈ U becomes:

(Fu∗ + a)>(u − u∗) ≥ 0, ∀u ∈ U .

Another characterization of saddle-point optimality is via the gap function:

G(w, z) =

[
max
z′∈Z

L(w, z′) − L∗

]
+

[
L∗ − min

w′∈W
L(w′, z)

]
, (17)

where the optimal loss is denoted L∗ = minw′∈W maxz∈Z L(w, z). For non-optimal points
(w, z), the gap G(w, z) is positive and serves as a useful merit function, a measure of
accuracy of the solution used by the extragradient algorithm. At an optimum we have

G(w∗, z∗) = max
z′∈Z

L(w∗, z′) − min
w′∈W

L(w′, z∗) = 0

.
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4.1 Dual extragradient

We first present the dual extragradient algorithm of Nesterov (2003) using the Euclidean
geometry induced by the standard 2-norm, and consider a non-Euclidean setup in Sec. 4.2.
Let

πU (u) ≡ arg min
u′∈U

||u − u′||2

denote the Euclidean projection of a vector u onto a convex set U . Note that projection
onto U is accomplished by independent projections onto W and each Zi. We define the
divergence function

d(v,v′) =
1

2
||v − v′||22.

Let us define a restricted gap function parameterized by positive divergence radii Dw and
Dz

GDw,Dz
(w, z) = max

z′∈Z

[
L(w, z′) | d(ż, z′) ≤ Dz

]
− min

w′∈W

[
L(w′, z) | d(ẇ,w′) ≤ Dw

]
,

where the point u̇ = (u̇w, u̇z) ∈ U is an arbitrary point that can be thought of as the
“center” of U . Assuming there exists a solution w∗, z∗ such that d(ẇ,w∗) ≤ Dw and
d(ż, z∗) ≤ Dz, this restricted gap function coincides with the unrestricted function defined
in Eq. (17). The choice of the center point u̇ should reflect the expectation of where the
“average” solution lies, as will be evident from the convergence guarantees of the algorithm
below. For example, we can take u̇w = 0 and let u̇zi

correspond the encoding of the target
yi.

The dual extragradient algorithm proceeds using very simple gradient and projection
calculations as follows:

Initialize: Choose u̇ ∈ U , set s−1 = 0.
Iteration t, 0 ≤ t ≤ τ :

v = πU (u̇ + ηst−1);

ut = πU (v − η(Fv − a)); (18)

st = st−1 − (Fut − a).

Output: ūτ = 1
τ+1

∑τ
t=0 ut.

Figure 2: Euclidean dual extragradient.

We will use the same indexing by w and z of the vectors v and s used in the algorithm
above. The iteration step of the algorithm Eq. (18) expands into:

vw = πW(u̇w + ηst−1
w

); vzi
= πZi

(u̇zi
+ ηst−1

zi
), ∀i;

ut
w

= πW(vw − η

[
∑

i

Fivzi
− fi(yi)

]
); ut

zi
= πZi

(vzi
+ η

[
F>

i vw + ci

]
), ∀i;

st
w

= st−1
w

−

[
∑

i

Fiu
t
zi
− fi(yi)

]
; st

zi
= st−1

zi
+ F>

i ut
w

+ ci, ∀i.
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The stepsize η is set to the inverse of the Lipschitz constant (with respect to the 2-norm)
of the gradient operator:

1/η = L ≡ max
u,u′∈U

||F(u − u′)||2
||u − u′||2

≤ ||F||2,

where ||F||2 is the largest singular value of the matrix F.
By Theorem 2 (Nesterov, 2003), after τ iterations, the gap of (w̄τ , z̄τ ) = ūτ is upper

bounded by:

GDw,Dz
(w̄τ , z̄τ ) ≤

(Dw + Dz)L

τ + 1
. (19)

This implies that O(1
ε
) steps are required to achieve a desired accuracy of solution ε as

measured by the gap function. Note that the exponentiated gradient algorithm (Bartlett
et al., 2004) has the same O( 1

ε
) convergence rate. This sublinear convergence rate is slow

compared to interior point methods, which enjoy superlinear convergence (Boyd and Van-
denberghe, 2004). However, the simplicity of each iteration and the linear-size memory
requirements make this a practical algorithm when the desired accuracy ε is not too small,
and, in particular, these properties align well with the desiderata of large-scale machine
learning algorithms.

The efficiency of the algorithm is determined by the computational complexity of the
Euclidean projection onto the feasible sets W and Zi. In the case of W, projections are cheap
when we have a 2-norm ball {w : ||w||2 ≤ γ}: πW(w) = γw/ max(γ, ||w||2). Additional
non-negativity constraints on the weights (e.g., we ≥ 0) can also be easily incorporated by
clipping negative values. Projections onto the 1-norm ball are not expensive either (Boyd
and Vandenberghe, 2004), but may be better handled by the non-Euclidean setup we discuss
below.

We turn to the consideration of the projections on Zi. The complexity of these projec-
tions is the key issue determining the viability of the extragradient approach for our class of
problems. In fact, for both alignment and matchings these projections turn out to reduce
to classical network flow problems for which efficient solutions exist. In case of alignment,
Zi is the convex hull of the bipartite matching polytope and the projections onto Zi reduce
to the much-studied minimum cost quadratic flow problem (Bertsekas, 1998). In particular,
the projection problem z = πZi

(z′i) can be computed by solving

min
0≤zi≤1

∑

jk∈Ei

1

2
(z′i,jk − zi,jk)

2

s.t.
∑

j∈Vs
i

zi,jk ≤ 1, ∀j ∈ V t
i ;

∑

k∈Vt
i

zi,jk ≤ 1, ∀k ∈ Vs
i .

We use a standard reduction of bipartite matching to min-cost flow by introducing a source
node s connected to all the words in the “source” sentence, V s

i , and a target node connected
to all the words in the “target” sentence, V t

i , using edges of capacity 1 and cost 0. The
original edges jk have a quadratic cost 1

2(z′i,jk − zi,jk)
2 and capacity 1. Now the minimum

cost flow from the source to the sink computes projection of z′i onto Zi.
The reduction of the min-cut polytope projection to a convex network flow problem

is also straightforward; we present this reduction in Appendix A. Algorithms for solving
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this problem, for example, Bertsekas et al. (1997), are nearly as efficient as those for
solving linear min-cost flow problems, bipartite matchings and min-cuts. In case of word
alignment, the running time scales with the cube of the sentence length. We use standard,
publicly-available code for solving this problem (Guerriero and Tseng, 2002)3.

4.2 Non-Euclidean dual extragradient

The Euclidean geometry induced by the standard 2-norm on W and Z might not be the
most natural in many prediction problems. For example, we might wish to regularize W by a
1-norm constraint. Indeed, in many decomposable problems, 1-norm (variational distance)
is better suited to the geometry of the simplex. Given a norm || · ||W on W and norms || · ||Zi

on Zi, we combine them into a norm on U as

||u|| = max(||w||W , ||z1||
Z1 , . . . , ||zm||Zm).

We denote the dual of U (the vector space of linear functions on U) as U ∗. The norm || · ||
on the space U induces the dual norm || · ||∗ for all s ∈ U∗:

||s||∗ ≡ max
u∈U ,||u||≤1

s>u.

The Lipschitz constant (with respect to this norm) is

L ≡ max
u,u′∈U

||F(u − u′)||∗
||u − u′||

.

The dual extragradient algorithm can adjust to the geometry at hand by making use of
Bregman divergences. We follow standard definitions from Nesterov (2003). We assume a
strongly convex function h(u):

h(αu + (1 − α)u′) ≤ αh(u) + (1 − α)h(u′) − α(1 − α)
σ

2
||u − u′||2, ∀u,u′, α ∈ [0, 1],

for some σ > 0, the convexity parameter of h(·). This function is constructed from strongly
convex functions on each of the spaces W and Zi by a simple sum: h(u) = h(w)+

∑
i h(zi).

Its conjugate is defined as:

h∗(s) ≡ max
u∈U

[s>u − h(u)].

Since h(·) is strongly convex, h∗(u) is well-defined and differentiable at any s ∈ U ∗. We
define

Ũ ≡ {∇h∗(s) : s ∈ U∗}.

We further assume that h(·) is differentiable at any u ∈ Ũ ; since it is also strongly convex,
for any two points u ∈ Ũ and u′ ∈ U ,

h(u′) ≥ h(u) + ∇h(u)>(u′ − u) +
σ

2
||u′ − u||2,

3. Available from http://www.math.washington.edu/∼tseng/netflowg nl/.

13



and we can define the Bregman divergence:

d(u,u′) = h(u′) − h(u) −∇h(u)>(u′ − u).

Note that when ||·|| is the 2-norm, we can use h(u) = 1
2 ||u||

2
2, which has convexity parameter

σ = 1, and induces the usual squared Euclidean distance d(u,u′) = 1
2 ||u−u′||22. When || · ||

is the 1-norm, we can use the negative entropy h(u) = −H(u) (say if U is a simplex), which
also has σ = 1 and recovers the Kullback-Leibler divergence d(u,u′) = KL(u′||u).

We define a projection operator based on the Bregman divergence:

Tη(u, s) ≡ arg max
u′∈U

[s>u′ −
1

η
d(u,u′)].

The only change to the algorithm is the switch from Euclidean projections πU (·) to Bregman
projections Tη(·, ·).

Initialize: Choose u̇ ∈ Ũ , set s−1 = 0,η = 1/L.
Iteration t, 0 ≤ t ≤ τ :

vw = Tη(u̇w, st−1
w

); vzi
= Tη(u̇zi

, st−1
zi

), ∀i;

ut
w

= Tη(vw,−

[
∑

i

Fivzi
− fi(yi)

]
); ut

zi
= Tη(vzi

,
[
F>

i vw + ci

]
), ∀i;

st
w

= st−1
w

−

[
∑

i

Fiu
t
zi
− fi(yi)

]
; st

zi
= st−1

zi
+ F>

i ut
w

+ ci, ∀i.

Output: ūτ = 1
τ+1

∑τ
t=0 ut.

Figure 3: Non-Euclidean dual extragradient.

The same convergence bound in Eq. (19) applies to the non-Euclidean setup, but now
the divergence radii are measured using Bregman divergence and the Lipschitz constant is
computed with respect to a different norm.

Example 1: L1 regularization

Suppose W = {w : ||w||1 ≤ γ}. We can transform this constraint set into a simplex
constraint by a variable transformation as follows. Let w = w+ − w−, v0 = 1 − ||w||1/γ,
and v ≡ (v0,w

+/γ,w−/γ). Then V = {v : v ≥ 0;1>v = 1} corresponds to W. We define
h(v) as the negative entropy of v:

h(v) =
∑

d

vd log vd.

The resulting conjugate and its gradient are given by

h∗(s) = log
∑

d

esd ;
∂h∗(s)

∂sd

=
esd

∑
d esd

.
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Hence, the gradient space of h∗(s) is the interior of the simplex, Ṽ = {v : v > 0;1>v = 1}.
The corresponding Bregman divergence is the standard Kullback-Leibler divergence

d(v,v′) =
∑

d

v′d log
v′d
vd

, ∀v ∈ Ṽ,v′ ∈ V,

and the projection operator, ṽ = Tη(v, s) = arg max
v′∈v

[s>v′ − 1
η
d(v,v′)] is given by a

multiplicative update:

ṽd =
vde

ηsd

∑
d vdeηsd

.

Note that we cannot choose u̇v = (1,0,0) as the center of Ṽ—given that the updates
are multiplicative the algorithm will not make any progress in this case. In fact, this choice
is precluded by the constraint that u̇v ∈ Ṽ, not just u̇v ∈ V. A reasonable choice is to set
u̇v to be the center of the simplex V, u̇vd

= 1
|V| = 1

2|W|+1 .

Example 2: tree-structured marginals

Consider the case when each example i corresponds to a tree-structured Markov network,
and Zi is defined by the normalization (2) and marginalization (3) constraints. These
constraints define the space of valid marginals. For simplicity of notation, we assume we
are dealing with a single example i and drop the explicit index i. Let us use a more
suggestive notation for the components of z: zj(α) = zjα and zjk(α, β) = zjkαβ. We can
construct a natural joint probability distribution via

Pz(y) =
∏

jk∈E

zjk(yj , yk)
∏

j∈V

(zj(yj))
1−qj ,

where qj is the number of neighbors of node j. Now z defines a point on the simplex of
joint distributions over Y, which has dimension |Y|. One natural measure in this enlarged
space is the 1-norm. We define h(z) as the negative entropy of the distribution represented
by z:

h(z) =
∑

jk∈E

∑

α∈Dj ,β∈Dk

zjk(α, β) log zjk(α, β) + (1 − qj)
∑

j∈V

∑

α∈Dj

zj(α) log zj(α).

The resulting d(z, z′) is Kullback-Leibler divergence KL(Pz′ ||Pz) on the joint distri-
butions represented by z′ and z. The corresponding Bregman projection operator, z̃ =
Tη(z, s) = arg max

z′∈Z [s>z′ − 1
η
KL(Pz′ ||Pz)] is given by a multiplicative update on the

space of distributions:

Pz̃(y) =
1

Z
Pz(y)eη[

P

jk sjk(yj ,yk)+
P

j sj(yj)] =
1

Z

∏

jk

zjk(yj , yk)e
ηsjk(yj ,yk)

∏

j

(zj(yj))
1−qjeηsj(yj),

where we use the same indexing for the dual space vector s as for z and Z is a normalization
constant. Hence, to obtain the projection z̃, we compute the node and edge marginals of
the distribution Pz̃(y) via the standard sum-product dynamic programming algorithm using
the node and edge potentials defined above. Note that the form of the multiplicative update
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Figure 4: Dependency diagram for memory-efficient dual extragradient. The dotted box
represents the computations of an iteration of the algorithm. Only ūt

w
and st

w

are kept between iterations. Each example is processed one by one and the
intermediate results are accumulated in rw = −

∑
i(Fivzi

− fi(yi)) and qw =
−

∑
i(Fiuzi

− fi(yi)).

of the projection resembles that of exponentiated gradient. As in the example above, we
cannot let u̇z be a corner (or any boundary point) of the simplex since Z̃ does not include
it. A reasonable choice for u̇z would be either the center of the simplex or a point near the
target structure but in the interior of the simplex.

5. Memory-efficient formulation

Consider the memory requirements of the algorithm. It maintains the vector sτ as well as
the running average, ūτ , which have dimension |W| + |Z|. However, note that they are
related very simply by:

sτ = −
τ∑

t=0

(Fut − a) = −(τ + 1)(Fūτ − a).

So it suffices to only maintain the running average ūτ and reconstruct s as needed.
However, in many learning problems the number of examples, m, is large and this storage

requirement is burdensome. The memory needed to store the target structure yi is often
much smaller than the corresponding vector zi. For example, for word alignment, we need
O(|Vs

i | log |V
t
i |) bits to encode a matching yi by using roughly logV t

i bits per node in Vs
i

to identify its match. By contrast, we need |Vs
i ||V

t
i | floating numbers to maintain zi. The

situation is worse in context-free parsing, where a parse tree yi requires space linear in the
sentence length and logarithmic in grammar size, while |Zi| is the product of the grammar
size and the cube of the sentence length.

Note that from ūτ = (ūτ
w

, ūτ
z
), we only care about ūτ

w
, the parameters of the model,

while the other part, ūτ
z
, maintains the state of the algorithm. Fortunately, we can eliminate

the need to store ūz by maintaining it implicitly, at the cost of storing a vector of size |W|.
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This allows us to essentially have the same small memory footprint of online-type learning
methods, where a single example is processed at a time and only a vector of parameters is
maintained. In particular, instead of maintaining the entire ūt and reconstructing st from
it, we can instead store only ūt

w
and st

w
between iterations, since

st
zi

= (t + 1)(F>
i ūt

w
+ ci).

The diagram in Fig. 4 illustrates the process. In the the resulting algorithm below, we
use two “temporary” variables vw and rw of size |W| to maintain intermediate quantaties
(qw, shown in Fig. 4 can be eliminated by using sw to accumulate the gradients). The total
amount of memory needed is 4 times the number of parameters plus memory for vzi

,uzi

for one example at a time. We assume that we do not need to store u̇zi
explicitly but can

construct it efficiently from (xi,yi).

Initialize: Choose u̇ ∈ Ũ , sw = 0, ūw = 0, η = 1/L.
Iteration t, 0 ≤ t ≤ τ :

vw = Tη(u̇w, sw); rw = 0.
Example i, 1 ≤ i ≤ m:

vzi
= Tη(u̇zi

, t(F>
i ūw + ci)); rw = rw − Fivzi

+ fi(yi);

uzi
= Tη(vzi

,F>
i vw + ci); sw = sw − Fiuzi

+ fi(yi).

ūw =
tūw+Tη(vw,rw)

t+1 .
Output w = ūw.

Figure 5: Memory-efficient dual extragradient.

Note that in case the dimensionality of the parameter space is much larger than the
dimensionality of Z, we can use a similar trick to only store variables of size of z. In fact, if
W = {w : ||w||2 ≤ γ} and we use Euclidean projections onto W, we can exploit kernels to
define infinite-dimensional feature spaces and derive a kernelized version of the algorithm.

6. Experiments

We investigate two structured models we described above: bipartite matchings for word
alignments and restricted potential Markov nets for 3D segmentation. We compared three
algorithms: the dual extragradient (dual-ex), the averaged projected gradient (proj-grad)
defined in Eq. (16), and the averaged perceptron (Collins, 2002). For dual-ex and proj-grad,
we used Euclidean projections, which can be formulated as min-cost quadratic flow prob-
lems. We used w = 0 and zi corresponding to yi as the centroid u̇ in dual-ex and as the
starting point of proj-grad.

In our experiments, we consider standard L2 regularization, {||w||2 ≤ γ}. A question
which arises in practice is how to choose the regularization parameter γ. The typical ap-
proach is to run the algorithm for several values of the regularization parameter and pick
the best model using a validation set. This can be quite expensive, though, and some recent
techniques have explored how to obtain the whole regularization path exactly (Hastie et al.,
2004) or approximately (Rosset, 2004) using path following techniques. In our experiments,
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we run the algorithm without regularization (γ = ∞) and track its performance on the val-
idation set, selecting the model with best performance. For comparison, whenever memory
limitation allowed, we used commercial software to compute points on the regularization
path. As we discuss below, the dual extragradient algorithm approximately follows the
regularization path (in terms of the training objective and test error) in the beginning and
the end of the range of γ and often performs better in terms of generalization error in the
mid-range.

6.1 Object segmentation

We test our algorithm on a 3D scan segmentation problem using the class of Markov
networks with regular potentials that were described above. The dataset is a challeng-
ing collection of cluttered scenes containing articulated wooden puppets (Anguelov et al.,
2005). It contains eleven different single-view scans of three puppets of varying sizes and
positions, with clutter and occluding objects such as rope, sticks and rings. Each scan
consists of around 7, 000 points. Our goal was to segment the scenes into two classes—
puppet and background. We use five of the scenes for our training data, three for valida-
tion and three for testing. Sample scans from the training and test set can be seen at
http://www.cs.berkeley.edu/~taskar/3DSegment/. We computed spin images of size 10× 5 bins
at two different resolutions, then scaled the values and performed PCA to obtain 45 prin-
cipal components, which comprised our node features. We used the surface links output by
the scanner as edges between points and for each edge only used a single feature, set to a
constant value of 1 for all edges. This results in all edges having the same potential. The
training data contains approximately 37, 000 nodes and 88, 000 edges. We used standard
Hamming distance for our loss function `(yi,y

′
i).

We compared the performance of the dual extragradient algorithm along its unregular-
ized path to solutions of the regularized problems for different settings of the norm.4 For
dual extragradient, the stepsize is set to η = 1/||F||2 ≈ 0.005. We also compared to a vari-
ant of the averaged perceptron algorithm (Collins, 2002), where we use the batch updates
to stabilize the algorithm, since we only have five training examples. We set the learning
rate to 0.0007 by trying several values and picking the best performing one on the validation
data.

In Fig. 6(a) we track the hinge loss on the training data:

∑

i

max
y
′

i∈Yi

[w>fi(y
′
i) + `i(y

′
i)] − w>fi(yi). (20)

The hinge loss of the regularization path (reg-path) is the minimum loss for a given norm,
and hence is always lower than the hinge loss of the other algorithms. However, as the
norm increases and the model approaches the unregularized solution, dual-ex loss tends
towards that of reg-path. Note that proj-grad behaves quite erratically in the range
of the norms shown. Fig. 6(b) shows the growth of the norm as a function of iteration
number for dual-ex and ave-perc. The unregularized dual extragradient seems to explore

4. We used CPLEX to solve the regularized problems and also to find the projections onto the min-cut
polytope, since the min-cost quadratic flow code we used (Guerriero and Tseng, 2002) does not support
negative flows on edges, which are needed in the formulation presented in Appendix A.
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Figure 6: Object segmentation results: (a) Training hinge loss for the regularization path
(reg-path), the averaged projected gradient (proj-grad), the averaged percep-
tron (ave-perc) and unregularized dual extragradient (dual-ex) vs. the norm
of the weights. (b) Norm of the weights vs. iteration number for the three algo-
rithms. (c) Validation error vs. the norm of the weights. (d) Test error vs. the
norm of the weights.

the range of models (in terms on their norm) on the regularization path more thoroughly
than the averaged perceptron and eventually asymptotes to the unregularized solution,
while proj-grad quickly achieves very large norm.

Fig. 6(c) and Fig. 6(d) shows validation and test error for the three algorithms. The
best validation and test error achieved by the dual-ex and ave-perc algorithms as well
as reg-path are fairly close, however, this error level is reached at very different norms.
Since the number of scenes in the validation and test data is very small (three), because
of variance, the best norm on validation is not very close to the best norm on the test set.
Selecting the best model on the validation set leads to test errors of 3.4% for dual-ex, 3.5%
for ave-perc, 3.6% for reg-path and 3.8% for proj-grad (proj-grad actually improves
performance after the model norm is larger than 500, which is not shown in the graphs).
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6.2 Word alignment

We also tested our algorithm on word-level alignment using a data set from the 2003 NAACL
set (Mihalcea and Pedersen, 2003), the English-French Hansards task. This corpus consists
of 1.1M pairs of sentences, and comes with a validation set of 39 sentence pairs and a test
set of 447 word-aligned sentences. The validation and test sentences have been hand-aligned
[see (Och and Ney, 2003)] and are marked with both sure and possible alignments. Using
these alignments, alignment error rate (AER) is calculated as:

AER(A, S, P ) = 1 −
|A ∩ S| + |A ∩ P |

|A| + |S|
,

where A is a set of proposed alignment pairs, S is the set of sure gold pairs, and P is the
set of possible gold pairs (where S ⊆ P ).

We experimented with two different training settings. In the first one, we split the
original test set into 100 training examples and 347 test examples—this dataset is called
the ‘Gold’ dataset. In the second setting, we used GIZA++ (Och and Ney, 2003) to produce
IBM Model 4 alignments for the unlabeled sentence pairs. We took the intersection of the
predictions of the English-to-French and French-to-English Model 4 alignments on the first
5000 sentence pairs from the 1.1M sentences in order to experiment with the scaling of our
algorithm (training on 500, 1000 and 5000 sentences). The number of edges for 500, 1000
and 5000 sentences of GIZA++ were about 31,000, 99,000 and 555,000 respectively. We
still tested on the 347 Gold test examples, and used the validation set to select the stopping
point. The step-size for the dual extragradient algorithm was chosen to be 1/||F||2.

We used statistics computed on the 1.1M sentence pairs as the edge features for our
model. A detailed analysis of the constructed features and corresponding error analysis is
presented in Taskar et al. (2005b). Example features include: a measure of mutual infor-
mation between the two words computed from their co-occurrence in the aligned sentences
(Dice coefficient); the difference between word positions; character-based similarity features
designed to capture cognate (and exact match) information; and identity of the top five
most frequently occurring words. We used the structured loss `(yi,y

′
i) defined in Eq. (10)

with (c+, c-) = (1, 3) (where 3 was selected by testing several values on the validation set).
We obtained low recall when using equal cost for both type of errors because the number
of positive edges is significantly smaller than the number of negative edges, and so it is safe
(precision-wise) for the model to predict less edges, hurting the recall. Increasing the cost
for false negatives solves this problem.

Figures 7(a) and 7(e) compare the hinge loss of the regularization path with the evolution
of the objective for the unregularized dual extragradient, averaged projected gradient and
averaged perceptron algorithms when trained on the Gold data set, 500 sentences and 1000
sentences of the GIZA++ output respectively.5 The dual extragradient path appears to
match closely the regularization path for ||w|| ≤ 2 and ||w|| ≥ 12. Figure 7(b) compares
the alignment error rate (AER) on the test set along the dual extragradient path trained on
the Gold dataset versus the regularization path AER. The results on the validation set for

5. The regularization path is obtained by using commercial optimization software Mosek with the QCQP
formulation of Eq. (15). We did not obtain the path in the case of 5000 sentences, as Mosek runs out of
memory.
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Figure 7: Word alignment results: (a) Training hinge loss for the three different algorithms and the regular-
ization path on the Gold dataset. (b) AER for the unregularized dual extragradient (dual-ex)
and the regularization path (reg-path) on the 347 Gold sentences (test) and the validation
set (valid) when trained on the 100 Gold sentences; (c) Same setting as in (b), comparing
dual-ex with the averaged projected-gradient (proj-grad); (d) Same setting as in (b), compar-
ing proj-grad with the averaged perceptron (ave-perc); (e) Training hinge loss for dual-ex

and reg-path on 500 and 1000 GIZA++ labeled sentences. (f) AER for dual-ex and reg-path

tested on the Gold test set and trained on 1000 and 5000 GIZA++ sentences. The graph for
500 sentences is omitted for clarity.
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each path are also shown. On the Gold data set, the minimum AER was reached roughly
after 200 iterations.

Interestingly, the unregularized dual extragradient path seems to give better results on
the test set than optimizing along the regularization path. The dominance of the dual
extragradient path over the regularization path is more salient in figure 7(f) for the case
where both are trained on 1000 sentences from the GIZA++ output. We conjecture that
the dual extragradient method provides additional statistical regularization (compensating
for the noisier labels of the GIZA++ output) by enforcing local smoothness of the path in
parameter space.

The averaged projected gradient performed much better for this task than segmenta-
tion, getting somewhat close to the dual extragradient path as is shown in Fig. 7(c). The
online version of the averaged perceptron algorithm varied significantly with the order of
presentation of examples (with sometimes 5 points of AER of difference between two or-
ders). To alleviate this, we randomize the order of the points at each pass over the data.
Figure 7(d) shows that a typical run of averaged perceptron does somewhat worse than dual
extragradient. The variance of the averaged perceptron performance for different datasets
and learning rate choices was also a lot higher than for dual extragradient, which is more
stable numerically. The online version of the averaged perceptron converged very quickly
to its minimum AER score; converging in as few as five iterations for the Gold training set.
Selecting the best model on the validation set leads to test errors of 5.6% for dual-ex, 5.6%
for reg-path, 5.8% for proj-grad and 6.1% for ave-perc on the Gold data training set.

The running time for 500 iterations of dual extragradient on a 3.4 Ghz Intel Xeon CPU
with 4G of memory was roughly 10 minutes, 30 minutes and 3 hours for 500, 1000 and 5000
sentences, respectively, showing the favorable linear scaling of the algorithm (linear in the
number of edges). Note, by way of comparison, that Mosek ran out of memory for more
than 1500 training sentences.

7. Conclusion

We have presented a general and simple solution strategy for large-scale structured pre-
diction problems. Using a saddle-point formulation of the problem, we exploit the dual
extragradient algorithm, a simple gradient-based algorithm for saddle-point problems (Nes-
terov, 2003). The factoring of the problem into optimization over the feasible parameter
space W and feasible structured output space Z allows easy integration of complex param-
eter constraints that arise in estimation of restricted classes of Markov networks and other
models.

Key to our approach is the recognition that the projection step in the extragradient
algorithm can be solved by network flow algorithms for matchings and min-cuts (and dy-
namic programming for decomposable models). Network flow algorithms are among the
most well-developed algorithms in the field of combinatorial optimization, and yield stable,
efficient algorithmic platforms.

One of the key bottlenecks of large learning problems is the memory requirement of the
algorithm. We have derived a version of the algorithm that only uses storage proportional
to the number of parameters in the model, and is independent of the number of examples.
We have exhibited the favorable scaling of this overall approach in two concrete, large-scale
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learning problems. It is also important to note that the general approach extends to a much
broader class of problems.
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Appendix A. Min-cut polytope projections

Consider projection for a single example i:

min
z

∑

j∈V

1

2
(z′j − zj)

2 +
∑

jk∈E

1

2
(z′jk − zjk)

2 (21)

s.t. 0 ≤ zj ≤ 1, ∀j; zj − zk ≤ zjk, zk − zj ≤ zjk, ∀jk.

Let h+
j (zj) = 1

2(z′j − zj)
2 if 0 ≤ zj , else ∞. We introduce non-negative Lagrangian

variables λjk, λkj for the two constraints for each edge jk and λj0 for the constraint zj ≤ 1
each node j.

The Lagrangian is given by:

L(z, λ) =
∑

j

h+
j (zj) +

∑

jk

1

2
(z′jk − zjk)

2 −
∑

j

(1 − zj)λj0

−
∑

jk

(zjk − zj + zk)λjk −
∑

jk

(zjk − zk + zj)λkj
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Letting λ0j = λj0 +
∑

k:jk∈E(λjk − λkj), note that

∑

j

zjλ0j =
∑

j

zjλj0 +
∑

jk

(zj − zk)λjk +
∑

jk

(zk − zj)λkj .

So the Lagrangian becomes:

L(z, λ) =
∑

j

h+
j (zj) + zjλ0j − λj0 +

∑

jk

1

2
(z′jk − zjk)

2 − zjk(λjk + λkj).

Now, minimizing L(z, λ) with respect to z, we have

min
z

L(z, λ) =
∑

jk

qjk(λjk + λkj) +
∑

j

q0j(λ0j) − λj0,

where qjk(λjk+λkj) = minzjk

[
1
2(z′jk − zjk)

2 − zjk(λjk + λkj)
]

and q0j(λ0j) = minzj
[h+

j (zj)+

zjλ0j ]. The minimizing values of z are:

z∗j = arg min
zj

[
h+

j (zj) + zjλ0j

]
=

{
0 λ0j ≥ z′j ;

z′j − λ0j λ0j ≤ z′j ;

z∗jk = arg min
zjk

[
1

2
(z′jk − zjk)

2 − zjk(λjk + λkj)

]
= z′jk + λjk + λkj .

Hence, we have:

qjk(λjk + λkj) = −z′jk(λjk + λkj) −
1

2
(λjk + λkj)

2

q0j(λ0j) =

{
1
2z′j

2 λ0j ≥ z′j ;

z′jλ0j −
1
2λ2

0j λ0j ≤ z′j .

The dual of the projection problem is thus:

max
λ

∑

j

q0j(λ0j) − λj0 +
∑

jk

−z′jk(λjk + λkj) −
1

2
(λjk + λkj)

2 (22)

s.t. λj0 − λ0j +
∑

jk

(λjk − λkj) = 0, ∀j;

λjk, λkj ≥ 0, ∀jk; λj0 ≥ 0, ∀j .

Interpreting λjk as flow from node j to node k, and λkj as flow from k to j and λj0, λ0j as
flow from and to a special node 0, we can identify the constraints of Eq. (22) as conservation
of flow constraints. The last transformation we need is to address the presence of cross-
terms λjkλkj in the objective. Note that in the flow conservation constraints, λjk, λkj always
appear together as λjk − λkj . Since we are minimizing (λjk + λkj)

2 subject to constraints
on λjk − λkj , at least one of λjk, λkj will be zero at the optimum and the cross-terms can
be ignored. Note that all λ variables are non-negative except for λ0j ’s. Many standard
flow packages support this problem form, but we can also transform the problem to have
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all non-negative flows by introducing extra variables. The final form has a convex cost for
each edge:

min
λ

∑

j

−q0j(λ0j) + λj0 +
∑

jk

z′jkλjk +
1

2
λ2

jk +
∑

jk

z′jkλkj +
1

2
λ2

kj (23)

s.t. λj0 − λ0j +
∑

jk

λjk − λkj = 0, ∀j;

λjk, λkj ≥ 0, ∀jk; λj0 ≥ 0, ∀j .
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