
Experiments offer more reliable evidence on causation than observational studies,
which is not to gainsay the contribution to knowledge from observation. Experi-
ments should be analyzed as experiments, not as observational studies. A simple
comparison of rates might be just the right tool, with little value added by “sophis-
ticated” models. This article discusses current models for causation, as applied to
experimental and observational data. The intention-to-treat principle and the ef-
fect of treatment on the treated will also be discussed. Flaws in per-protocol and
treatment-received estimates will be demonstrated.
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The object here is to discuss some current statistical models for causa-
tion. Observational studies will be considered, with procedures for handling
confounders by stratification or by making statistical adjustments. How-
ever, the starting point is experiments. Indeed, one objective of statistical
modeling is to create an analogy, perhaps forced, between an observational
study and an experiment; hence the focus on experiments. Some of the key
philosophical issues behind the models will be mentioned, if not resolved.
Section 10 gives explicit mathematical formulations for models, estimators,
and estimands.

Statistical models for causation go back to Jerzy Neyman’s work on
agricultural experiments in the early part of the 20th century. The key paper,
Neyman (1923), was in Polish. There was an extended discussion by Scheffé
(1956), and an English translation by Dabrowska and Speed (1990). The
model was discussed in elementary textbooks in the 1960s. See, for instance,
Hodges and Lehmann (1964, section 9.4). The setup is often called “Rubin’s
model,” due in part to Holland (1986, 1988) who cites Rubin (1974). That
simply mistakes the history.
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Neyman’s model covers observational studies, in effect by assuming
these studies are experiments after suitable controls have been introduced.
Neyman does not require random assignment of treatments, assuming in-
stead an urn model, which applies rather neatly to the as-if randomized
natural experiments of the social and health sciences. The model is non-
parametric, with a finite number of treatment levels. Holland and Rubin
(among others) discuss real-valued treatment variables and parametric mod-
els, including linear causal relationships. Neyman’s model and its extensions
will be referred to here as the “Neyman-Holland-Rubin” model.

Turn now to the simplest sort of experiment, which has a treatment
group and a control group. There is a large population of subjects (the study
population or just the population). Some subjects are chosen at random
and assigned to the treatment group; the remaining subjects are assigned to
the control group. According to the Neyman-Holland-Rubin model, each
subject has two potential responses. The first is observed if the subject is
assigned to treatment. The second is observed if the subject is assigned to
control. In the nature of things, both responses cannot be observed. We take
the population to be large because random error in estimators will be only
a minor detail in what follows. For a discussion of statistical inference in
regression models, see, for instance, Freedman (2005b, 2006).

Three parameters are of interest. These parameters describe the study
population:

(i) the average response, if all subjects were assigned to treatment,
(ii) the average response, if all subjects were assigned to control,

(iii) the difference between (i) and (ii).

The third parameter, called the intention-to-treat parameter, is perhaps the
most interesting (it is sometimes called the average causal effect or the aver-
age treatment effect). This parameter represents the average effect obtained
by assigning everyone in the study population to treatment, relative to the
average effect obtained by assigning everyone to the control regime. Gen-
eralizing from the experimental subjects to a broader population—external
validity—is a major concern, but beyond the scope of this article.

Given the model, it is easy to construct unbiased estimates for the three
parameters. The estimates are, respectively,

(i) the average response among subjects assigned to treatment,
(ii) the average response among subjects assigned to control,

(iii) the difference between (i) and (ii).

The third is the intention-to-treat estimator. Although subjects are hetero-
geneous, the intention-to-treat estimator makes no statistical adjustments for
heterogeneity. Instead, randomization is relied upon to balance the treatment
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and control groups, within the limits of random error. That, after all, is the
whole point of doing randomized experiments. Adjustments might in the
end bring no additional clarity, a topic considered below.

1. IDEAS OF CAUSATION

The idea of causation built into the Neyman-Holland-Rubin model is
simple enough. If you assign the subject to treatment, there is one response.
If you assign the subject to control, there is another response. Assignment
is the cause, response is the effect. The model is well suited to experi-
ments or quasi-experiments, where assignment can (at least in principle) be
manipulated by the investigator. The formalism applies less well to non-
manipulationist ideas of causation: the moon causes the tides, earthquakes
cause property values to go down, time heals all wounds. Time is not manip-
ulable; neither are earthquakes or the moon. Other models may be needed
to handle non-manipulationist causation.

Evans (1993) has an interesting review of causal ideas in epidemiology,
with many examples. In the legal context, the survey to read is Hart and
Honoré (1985). Hume (1748) discusses regular succession and mentions
hypothetical counterfactuals, although the latter idea is usually associated
with David Lewis. Interestingly enough, Hume (section VII, part II) says
that regularities and counterfactuals give equivalent definitions of causation:

“we may define a cause to be an object, followed by another, and where
all objects similar to the first are followed by objects similar to the
second. Or in other words where, if the first object had not been, the
second never had existed.”

See Lewis (1973) or Mackie (1974) for a discussion of Hume’s ideas, and
other ideas of causation.

2. CLINICAL TRIALS

In real experiments, some subjects do not follow protocol: for example,
a subject assigned to the treatment group may on reflection decline to be
treated. That sort of person is said to cross over from treatment to control.
(The intention-to-treat estimator focuses on assignment, which is under the
control of the experimenter, not on the treatment actually received by the
subjects.) Crossover is our next topic, but first, a quick look at medical
studies, where some of the vocabulary may be unfamiliar. In medicine,
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a randomized controlled experiment with human subjects is often called a
clinical trial. The treatment arm is the treatment group; the control arm is
the control group. The experiment runs according to a detailed plan called
the protocol. Subjects who follow protocol accept the regime to which they
are assigned.

In a clinical trial to see whether vitamin supplements prevent cancer and
heart disease, subjects randomized to the treatment arm will be given vitamin
supplements; subjects in the control arm will not be given the supplements.
In the treatment arm, subjects who follow protocol take their vitamins; in the
control arm, subjects who follow protocol do not sneak off to find vitamins.
Empirical findings may be of interest. In too-brief summary, many obser-
vational studies suggest that vitamins have a strong protective effect; but
the experiments go the other way. See, for instance, Virtamo et al. (2003),
U. S. Preventive Services Task Force (2003), Smith and Ebrahim (2005).
The conflict between observational studies and experiments is not confined
to vitamins; another recent example is provided by hormone replacement
therapy for post-menopausal women. Many observational studies suggest
that hormone replacement therapy protects against heart disease. The ex-
periments show that, if anything, hormones have adverse effects. See, for
instance, Petitti (1998, 2002).

Why is there a conflict between the observational data and the exper-
imental data? People who eat lots of vitamins are different from the rest
of us in other ways too. Similarly, women who take hormones differ from
women who do not. Some of the differences can perhaps be adjusted out by
statistical modeling, but statistical adjustments are incomplete. That is why
observational studies, no matter how intricate the statistical analysis, often
get it wrong. And that in turn is why clinical trials are needed. For parallel
examples in political science, see Arceneaux, Gerber, and Green (2006).
On the other hand, most of what we know about causation in the medical
and social sciences derives from observational studies. See, for instance,
chapter 1 in Freedman (2005b).

3. SINGLE CROSSOVER

We return to the Neyman-Holland-Rubin model for experiments. Intent-
ion-to-treat analysis was considered above, in the context of a randomized
controlled experiment with one treatment group and one control group.
However, subjects may not follow protocol. In a relatively simple case,
all subjects assigned to control accept the control regime. However, some
subjects assigned to the treatment group decline treatment, following the
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control regime instead. This is single crossover. To avoid potential ambi-
guity, define “the treatment group” as the group of individuals assigned to
treatment, whether they accept treatment or not; the “assigned-to-treatment
group” may be clearer, and is occasionally used for emphasis. Similar com-
ments apply to the control group. Problems due to crossover are minimized
if the trial can be run “blind,” so that subjects do not know which treatment
they are receiving. Blinding is often difficult to achieve; here, we will be
assuming that the blind is at best imperfect.

The Neyman-Holland-Rubin is easily adapted to handle single crossover,
as follows. There are two kinds of subjects, “compliers” and “never-treat.”
A complier follows protocol. As before, a complier has two potential re-
sponses, of which only one can be observed. If we assign the complier to
treatment, the response to treatment is observed; if we assign the complier
to control, the response to the control regime is observed. By contrast, a
never-treat subject is assumed to have only one response. This response is
observed whether the subject is assigned to treatment or to control. The idea
is that assignment affects response only through the regime chosen by the
subject, and a never-treat subject always chooses the control regime.

The intention-to-treat analysis remains valid. That analysis provides an
unbiased estimate for the intention-to-treat parameter, which may still be the
parameter of greatest policy interest. But there are now other parameters,
namely,

(i) the fraction of compliers in the experimental population,
(ii) the average response of compliers to treatment,

(iii) the average response of compliers to the control regime,
(iv) the difference between (ii) and (iii), which is the average effect of

treatment on the compliers,
(v) the average response of never-treat subjects to the control regime.

These parameters can all be estimated. To begin with (i), the fraction
of compliers in the treatment group estimates the fraction in the whole study
population. After all, due to random assignment, the treatment group is a
random sample from the population, and the average of a random sample is
an unbiased estimator for the average of the population. Similarly for (ii):
the average response to treatment of all compliers in the study population is
estimated by the average response among compliers in the treatment group,
namely, the subjects assigned to treatment who accept treatment. Similarly
for (v): the average response of all never-treat subjects to the control regime
is estimated by the average response among subjects in the treatment group
who decline treatment.

What about (iii)? This parameter is estimated by solving an algebraic
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equation, as shown in section 10. Basically, the average response in the
control group is a mix of the average response for compliers in the control
condition (the unknown), and the average response for never-treat subjects
(which has already been estimated). Due to random assignment, the mix
of subjects in the control group has to be about the same as the mix in the
treatment group. That sets up the equation, which can be solved to get
an estimate for the average response of compliers, across the whole study
population, to the control regime. Finally, (iv) is estimated by subtraction.

4. DOUBLE CROSSOVER

Double crossover means that some subjects assigned to treatment cross
over to the control arm, while some subjects assigned to the control arm cross
over to treatment. Three estimators are widely used in this setting:

(i) instrumental-variables,
(ii) per-protocol,

(iii) treatment-received.

In section 10, we pinpoint the estimands: what are these different estimators
trying to estimate?

The Neyman-Holland-Rubin model can be elaborated to handle double
crossover. As a preliminary matter, there are four types of subjects in the
model.

Always-treat. If assigned to the treatment group, this type of subject
accepts treatment. If assigned to the control group, this type of subject insists
on treatment. In other words, these subjects always take treatment.

Complier. If assigned to the treatment group, this type of subject ac-
cepts treatment. If assigned to the control group, this type of subject accepts
the control regime. In other words, these subjects follow instructions.

Never-treat. If assigned to the treatment group, this type of subject
declines treatment and follows the control regime. If assigned to the control
group, this type of subject accepts the control regime. In other words, these
subjects never take treatment.

Defier. If assigned to the treatment group, this type of subject declines
treatment, and follows the control regime. If assigned to the control group,
this type of subject insists on treatment. In other words, these subjects do
the opposite of what they are told to do.

Partial information about subject type is available from the experimental
results. For instance, if you assign a subject to treatment and he takes the
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treatment, he is either always-treat or a complier; if he declines treatment, he
is either never-treat or a defier. On the other hand, if you assign a subject to
the control group and she follows the control regime, she is either a complier
or never-treat; if she insists on treatment, she is either always-treat or a defier.
Finer detail is not determined by the data.

According to the model, if a subject is always-treat, the same response
will be observed regardless of assignment: similarly if a subject is never-
treat. In other words, it is assumed that subjects respond to the regime
they select, rather than to assignment. If a subject is a complier, however,
there are two potential responses. The first is to treatment and the second
to control. Only one of the two can be observed. Defiers also have two
potential responses.

As will be seen in section 10, the instrumental-variables estimator is
getting at the differential effect of treatment on compliers. An identifying
assumption is needed—that there are no defiers. The estimands of the per-
protocol and treatment-received estimators are complex mixtures of struc-
tural parameters, with no obvious interpretation. Therefore, the latter two
estimators are not recommended.

5. REGRESSION MODELS FOR EXPERIMENTAL DATA

Experimental data are often analyzed by fitting regression models and
their ilk. As shown in section 10, randomization does not justify such models.
Experimental data should therefore be analyzed first by comparing rates or
averages, according to the intention-to-treat principle. Only then should
models be deployed. It must be emphasized that statistical adjustments to
experimental data often depend substantially on assumptions, not just on
randomization.

6. OBSERVATIONAL STUDIES

The Neyman-Holland-Rubin model extends to observational studies,
where subjects assign themselves to treatment and control conditions. In a
natural experiment, the investigator may be willing to assume that assign-
ment is as-if randomized, and the model can be used without any substantive
changes. (In this context, Neyman’s urn model just says that the treatment
group can be considered as a random sample from the study population, the
remaining subjects going into control.) Usually, however, the problem of
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confounding must be faced: treatment and control groups differ in some ob-
vious and not-so-obvious ways, above and beyond the difference of primary
interest.

One way to deal with confounding is by stratification. The investigator
may compare the treatment and control groups within relatively homoge-
neous categories defined by possible confounders. The assumption is that
within strata, assignment to treatment or control is as-if randomized: the
Neyman-Holland-Rubin model should therefore hold within strata. Take,
for example, a study on the health effects of smoking. Smokers may be
older than non-smokers, and more of them will be male. That would con-
found the relationship between smoking and heart disease. The solution
would be to compare smokers and non-smokers within categories defined
by gender and age, for instance, to compare men age 60–69 who are smok-
ers with men age 60–69 who are non-smokers. Which group has the higher
death rate from heart disease? (The answer will come as no surprise.)

Stratification uses up the sample with great rapidity. For this reason
among others, it is quite common to handle, or try to handle, confounding
variables by means of regression models and the like, including logits and
probits when response variables are categorical. Difficulties in the modeling
approach are well known. In brief, the models assume without warrant that
effects are linear and additive on the chosen scale, with parameters that are
constant across subjects and invariant to intervention. To justify the usual
formulas for standard errors and significance levels—and the usual claims
that regression estimates are unbiased—additional statistical assumptions
are needed, for example, disturbance terms are independent across subjects
and independent of explanatory variables in the equation. This further com-
plicates the picture. (For probits and logits, similar assumptions would need
to be made about latent variables in the model.) The number of successful
applications is limited. For discussion, see Berk (2004), Brady and Collier
(2004), Freedman (2005ab).

Regression models for causation usually describe relationships among
variables. Lieberson (1985) finds little merit in such models: finer-grain
analytic methods are needed for causal inference. Abbott (1997, 1998)
reaches similar conclusions: statistical variables may be too thin to sup-
port detailed social-science investigations, and models will rarely give the
equivalent of experimental control. Also see Sobel (2000). Hedström and
Swedberg (1998) find that models should grow from our understanding of
social mechanisms: regression models generally fail this test. Lieberson and
Lynn (2002) suggest that using regression to mimic experimental control is
the wrong paradigm for the social sciences.



D. A. Freedman 699

7. SIMULTANEOUS-EQUATION MODELS

Section 10 considers in detail a successful but narrow application of
instrumental variables—estimating the differential effect of treatment on
compliers, in an experiment with one treatment group and one control group.
Even with two treatment groups and a control group (so there are three groups
in total rather than two), the application would be less satisfying, because
linearity would no longer be automatic. Assumptions that are stronger and
less plausible would be needed. In the alternative, the instrumental-variables
estimator can be viewed as estimating a data-dependent mixture of structural
parameters, which might (or might not) be of interest.

Of course, instrumental variables are used much more broadly in the
social sciences, to deal with reciprocal causation. There are all the difficulties
mentioned above in connection with single-equation methods: why this
functional form and not another? Why are these variables included and those
excluded? Why are the coefficients constant across subjects and invariant
to intervention? What about the statistical assumptions on the disturbance
terms?

With simultaneous equations, such difficulties remain. Additionally,
some variables are taken to be exogenous (independent of the disturbance
terms) and some endogenous (dependent on the disturbance terms). The
rationale is seldom clear, because—among other things—there is seldom
any very clear description of what the disturbance terms mean, or where
they come from. A common formulation, that disturbance terms represent
the effect of variables omitted from the equation, simply does not withstand
scrutiny, especially when taken in conjunction with assumptions about exo-
geneity. See, for instance, Pratt and Schlaifer (1984, 1988).

There is, however, an even more fundamental question to consider.
Simultaneous equations grow out of work in econometrics, where market-
clearing price and quantity are fundamental. It is appealing to formalize
equilibrium price and quantity as the joint solution to a pair of supply and
demand equations, an idea that goes back to Alfred Marshall. Since his time,
the technique has diffused outwards. Thus, in other domains, reciprocal
causation between two variables is often represented by a pair of equations
in those two variables, with additional “exogenous” variables entered as
statistical controls. But why is this two-equation formalism appropriate?
What would an equilibrium solution mean, and why would it be relevant to
the substantive issue? Such questions are seldom addressed on the pages of
social-science journals, and there do not seem to be any very good answers.
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8. OTHER LITERATURE

Stone (1993) has a particularly elegant presentation of the Neyman-
Holland-Rubin model, with a discussion of its implications for applied work.
Freedman (2005ab) explains how the model gets from association to causa-
tion via regression (by making assumptions). Instrumental-variables estima-
tors are discussed by Imbens and Angrist (1994); also see Angrist, Imbens,
and Rubin (1996). There is a useful survey by Angrist and Krueger (2001).
Robins (1999) demonstrates the essential ambiguity in regression-type ad-
justments for confounders; also see Scharfstein, Rotnitzky and Robins (1999).
Heckman (2000) considers the role of potential responses in economics, and
the limitations of statistical models for causation. The intention-to-treat prin-
ciple goes back to Bradford Hill (1961, p. 259); for additional discussion,
see Newell (1992).

9. DISCUSSION

Even for experiments, the realism of the Neyman-Holland-Rubin model
may be debatable. (The moral is, do the experiment; be wary of model-
based interpretations.) Heterogeneity is represented in the model because
different subjects have different responses. But each subject’s response is
assumed to depend only on that subject’s assignment: the assignment of
other subjects is not material. Certain kinds of social experiments are thus
precluded. In a clinical trial conducted by many cooperating physicians,
patient compliance might well depend on the personality of the treating
physician, so that outcomes depend not only on assignment but also on
details not specified in the protocol or represented in the model. If these
details matter, the model may be inadequate. The identifying restriction for
the instrumental-variables estimator is troublesome: just why are there no
defiers?

The discussion here involved one treatment group and one control
group, with deterministic responses at the individual level. Several levels of
treatment can be considered, and responses could have random components.
Real experiments take place over an extended time period; compliance may
well depend on a subject’s response to the treatment or control regimes, and
may not be fully observed. Some subjects will follow neither the treatment
regime nor the control regime; others will drop out of the study completely.
Such issues create substantial additional difficulties.

For the instrumental-variables estimator with several levels of treatment
and random responses, identifying restrictions could be hard to accept. In
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many circumstances, the instrumental-variables estimator turns out to be
estimating some data-dependent average of structural parameters, whose
meaning would have to be elucidated. By contrast, for the intention-to-
treat estimator, the average response among subjects assigned to a particular
level of treatment remains an unbiased estimator for the mean response, if
all subjects were assigned to that level of treatment.

Even in a true experiment, only intention-to-treat is an experimental
comparison. That comparison is based on assignment, which is under the
control of the investigator. Other analyses are observational, because it is
the subjects who decide which regime to follow. That is why the intention-
to-treat estimator is the most robust. The instrumental-variables estimator
has its place, to estimate the differential effect of treatment on compliers.
Per-protocol and treatment-received estimators should be used sparingly if
at all, because the estimands have no obvious interpretation. Randomiza-
tion does not justify regression models, or probits, or logits, and the list
could be extended. Experimental data should therefore be analyzed first
by comparing rates or averages, following the intention-to-treat principle.
Such comparisons are justified because the treatment and control groups are
balanced, within the limits of chance variation, by randomization. Modeling
is potentially useful, as a secondary mode of analysis.

Regression models (broadly understood) are often used to draw causal
inferences from observational data, potential confounders being entered as
additional explanatory variables alongside the putative causal variable. The
number of successful applications, however, is limited. Restrictive assump-
tions are needed in order to make causal inferences from observational data,
and these assumptions can seldom seldom be justified. Instrumental vari-
ables may help in some circumstances, but the technique is no panacea.

Simpler analytic techniques and stronger research designs are to be
preferred. Sometimes, randomized controlled experiments can be done. In
other cases, natural experiments will be available, although data collection
can be expensive. Convergent lines of evidence from different kinds of
studies add strength to causal inferences. For this reason among others,
combining qualitative and quantitative analysis may be helpful. If models
are to be used, assumptions need to be discussed, and limitations of technique
should be acknowledged.

In an observational study, confounding is a key difficulty. The Neyman-
Holland-Rubin model does not really provide any new tools to handle con-
founders. In that sense, it gives no inferential leverage. On the other hand,
the model brings additional clarity to the discussion of foundational issues.
What is the estimand for this estimator? What would have to be assumed,
in order to justify analyzing those data by that technique? The model is



702 Statistical Models for Causation

therefore a step forward.

10. TECHNICAL NOTES

Intention-to-treat

The intention-to-treat estimator is the average response in the assigned-
to-treatment group, minus the average response in the assigned-to-control
group. The estimand is the average response of the study population if all
were assigned to treatment, minus the average response if all were assigned
to control.

To pursue these ideas, it will be convenient to introduce some mathe-
matical notation. We index subjects by i, running from 1 to N . If subject i is
assigned to treatment, the response is Ti ; if assigned to control, the response
is Ci . If all subjects in the experimental population are assigned to treatment,
the average response is

T = 1

N

N∑

i=1

Ti.

If all are assigned to control, the average response is

C = 1

N

N∑

i=1

Ci.

The intention-to-treat parameter is T − C, which measures the average dif-
ference that assignment to treatment would make, in the study population.
These quantities are all parameters: they are computed at the level of the
population, not the data. (Remember, if you see the treatment response Ti ,
you don’t see the control response Ci .)

The estimators are the obvious ones: T is estimated by the average
response of the subjects assigned to treatment; C is estimated by the average
response of the subjects assigned to control; and the difference between these
two sample averages estimates the intention-to-treat parameter. The estima-
tors are unbiased, even in finite samples, because the average of a random
sample is an unbiased estimator for the average of the parent population.

The version of the model described above is deterministic at the level
of individuals. If you assign i to treatment, the response is Ti ; if you assign
i to control, the response is Ci . But two different subjects i and j may
well have different responses to treatment (Ti �= Tj ); they may also have
different responses to the control regime (Ci �= Cj ). Moreover, the model
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is easily generalized so that Ti and Ci are random variables; independence
across subjects would be needed to justify the usual variance calculations.
Although we do not pursue the idea here, parameters would be defined as
follows:

T = 1

N

N∑

i=1

E(Ti), C = 1

N

N∑

i=1

E(Ci).

A model for crossover

Let α denote the fraction of always-treat subjects in the study popula-
tion. This is a parameter. We assume Ti = Ci for always-treat subjects, the
idea being that the response is to treatment not assignment, and the subjects
in question always seek out treatment. Let A be the average response for
always-treat subjects. This is another parameter: the average is taken over
the totality of always-treat subjects in the experimental population.

Let β be the fraction of compliers in the study population; β is a param-
eter. A complier i has two potential responses, Ti if assigned to treatment
and Ci if assigned to control. Let T be the average response of the compliers,
if all of them are assigned to treatment. Let C be the average response of the
compliers, if all of them are assigned to control. These are parameters too.

Let γ be the fraction of never-treat subjects in the study population; γ

is a parameter. We assume Ti = Ci for never-treat subjects: the response is
to treatment not assignment, and these subjects always seek out the control
regime. Let N be the average response for all the never-treat subjects in the
study population. This is another parameter.

Average response
when assigned to

Group Number treatment control

Always-treat αN A A

Compliers βN T C

Never-treat γN N N

Defiers θN T C

Let θ be the fraction of defiers in the study population; θ is a parameter.
A defier i has two potential responses, Ti if assigned to treatment and Ci

if assigned to control. Let T be the average response of the defiers, if all
of them are assigned to treatment. Let C be the average response of the
defiers, if all of them are assigned to control. These are parameters too.
The notation may seem paradoxical (hence the gothic letters). For instance,
defiers assigned to treatment seek out the control condition. Thus, T is the
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average response of the defiers, if all of them are assigned to treatment—and
therefore follow the control regime.

The four fractions α, β, γ, θ must add up to 1, i.e., α +β +γ + θ = 1.
There are N subjects in the study population, so the number of always-treat
subjects (for example) is αN . The structural parameters are summarized in
the table.

Single crossover

Suppose that subjects assigned to control follow protocol; on the other
hand, some subjects assigned to treatment accept treatment, while others seek
out the control regime. We represent this state of affairs by assuming α =
θ = 0, i.e., there are no always-treat subjects and no defiers. This assumption
can be tested pretty well from the data—if either α or θ were positive, we
should see crossover from control to treatment. As a consequence of the
assumption, β + γ = 1.

To start with never-treat subjects, the estimator γ̂ is the fraction of
never-treat subjects in the assigned-to-treatment group. (Never-treat sub-
jects assigned to treatment are easy to spot—they’re the ones who decline
treatment.) Similarly, the estimator N̂ is the average response among never-
treat subjects assigned to treatment. Turn now to compliers. First, β̂ = 1−γ̂ .
Next, the estimator T̂ is the average response among subjects who are as-
signed to treatment and stay the course. (As a matter of notation, γ̂ estimates
γ while N̂ estimates N, and so forth.)

What about the response of compliers to the control regime? The control
group is a mix of compliers and never-treat subjects. We cannot tell which
is which, but we know the proportions are β and γ , sampling error apart.
(Due to random assignment, the control group is a random sample from the
population; and in the population, the proportions are β and γ , by definition
of the parameters.) The average response of the compliers in the control
group will be essentially C, just as the average response of the never-treat
subjects in the control group will be close to N.

Let YC be the average response in the control group (this is a sample
quantity). With E for expectation,

E(YC) = βC + γN. (1)

So
C = (

E(YC) − γN
)
/β. (2)

Equation (2) suggests an estimator for C:

Ĉ = (
YC − γ̂ N̂

)
/β̂. (3)
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Here and elsewhere, we are tacitly assuming that β is positive.
To be more explicit about T̂, let YT be the average response in the

treatment group. Then YT = β̂T̂ + γ̂N, so T̂ = (Y T − γ̂N)/β̂ and

T̂ − Ĉ = (Y T − YC)/β̂. (4)

This sort of estimator is discussed by, among others, Bloom (1984), Smith,
Kulik, Stromsdorfer (1984), Sommer and Zeger (1991), Imbens and Angrist
(1994), Angrist, Imbens, and Rubin (1996). Also see Heckman and Robb
(1985). For an example in the context of a clinical trial on mammography,
see Freedman, Petitti, and Robins (2004, p. 73).

Per-protocol analysis

The per-protocol estimator is the average response of those in the
assigned-to-treatment group who accept treatment, minus the average re-
sponse of those in the assigned-to-control group who accept the control
regime. This is an estimate of

αA + βT

α + β
− βC + γN

β + γ
. (5)

The relevance of this parameter is not obvious. The per-protocol estimator
is increasingly popular, but it should not be used without careful reflection.

The logic behind (5). Let ξ be the average response among those in
the treatment group who accept treatment, and let ζ be the average response
among those in the control group who accept the control regime. The es-
timator is ξ − ζ . Take ξ first. The proportions of always-treat, compliers,
never-treat, and defiers in the treatment group are essentially α, β, γ, θ re-
spectively. Only the first two types of subjects contribute to ξ . If you divide
the numerator and denominator of ξ by the (large) size of the treatment
group, the numerator is essentially αA + βT, while the denominator is es-
sentially α + β. The argument for ζ is similar. We have been assuming that
many subjects know which regime they are following; if the trial is blind,
and few subjects can break the blind, the per-protocol analysis will be more
sensible.

Treatment-received analysis

The treatment-received estimator is the average response of those who
follow the treatment regime, minus the average response of those who follow
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the control regime. Assignment is not explicitly considered in the calcula-
tion. The estimand is

αλA + βλT + αA + θC

αλ + βλ + α + θ
− βC + γN + γ λN + θλT

β + γ + γ λ + θλ
, (6)

where λ is the size of the treatment group divided by the size of the control
group. Again, the relevance of the parameter is obscure. The treatment-
received estimator is not recommended. The argument for (6) is like the
previous one, although it is a little more complicated. In the control group,
always-treat subjects and defiers contribute terms to the analog of ξ . In the
treatment group, never-treat subjects and defiers contribute to the analog
of ζ .

The methodological implication. As (5) and (6) show, when choosing
an estimator, it is important to consider the parameter that is to be estimated.

Instrumental variables

If we allow the existence of defiers, the problem is under-identified:
the structural parameters cannot all be estimated. The following identifying
restriction is therefore often imposed.

Assume that there are no defiers.

We will come to the instrumental-variables estimator shortly, but first
consider the problem informally. Take the subjects assigned to treatment.
Those who accept treatment are a mix of always-treat subjects and compliers;
those who refuse treatment are never-treat subjects. Up to random error, the
fraction who accept treatment will be α + β, with an average response
(αA + βT)/(α + β); the fraction who refuse treatment will be γ , with an
average response N.

Now, take the subjects assigned to control. Those who seek out treat-
ment are the always-treat subjects; those who accept the control regime are
a mix of compliers and never-treat subjects. Up to random error, the fraction
who seek out treatment will be α, with an average response A; the fraction
who accept the control regime will be β + γ , with an average response
(βC + γN)/(β + γ ).

The fractions α, β, γ are estimable. The other parameters are also
estimable. (Bias and variance are discussed below; there are a few other
minor technicalities, for instance, if α = 0 then A is not identifiable.) The
differential effect of treatment on compliers is T−C. The effect of treatment
on the treated is a little ambiguous, but usually seems to mean the differential
effect on subjects who would accept treatment if assigned to treatment. These
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are a mix of always-treat subjects and compliers, in the proportion α to β.
Assignment has no effect on always-treat subjects, so the effect of treatment
on the treated is (T − C) × β/(α + β).

The usual instrumental-variables estimator, with assignment as the in-
strument for treatment, may be viewed as estimating the differential effect of
treatment on compliers. This is an important parameter, because compliers
are the only group whose behavior is influenced by assignment. (Defiers
have been ruled out, by assumption.) The estimator can be written as

YT − YC

XT − XC
, (7)

where YT is the average response in the treatment group, and XT is the
fraction in the treatment group who accept treatment; similarly, YC is the
average response in the control group, and XC is the fraction in the control
group who seek out treatment.

Before deriving the estimator (a tedious algebra exercise), we explain
why it works. If we ignore random error—the experiment is a big one,
so random error is the least of our problems—the fraction of always-treat
subjects in the treatment group is α, and their average response is A. The
fraction of compliers in the treatment group is β, and their average response
is T. The fraction of never-treat subjects in the treatment group is γ , and their
average response is N. Thus, YT .= αA+βT+γN and XT .= α+β, where
.= means nearly equal. Similarly, YC .= αA+βC+γN and XC .= α. Now,
YT −YC .= β(T−C), because αA+γN cancels on subtraction. Similarly,
XT −XC .= β. Because β cancels on division, the ratio is essentially T−C,
as required.

Why Is (7) the instrumental-variables estimator?

The equation to think about is

Yi = a + bXi + ui, (8)

where Yi is the observed response and Xi is treatment received. Properties
of the error term will not matter here, the object being to derive the estimator
rather than determining its statistical properties.

We instrument Xi by assignment Zi . There are two estimating equa-
tions in two unknowns, â and b̂, namely,

ave(Y ) = â + b̂ave(X), (9)

ave(ZY ) = â ave(Z) + b̂ave(ZX), (10)
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where “ave” is taken across all subjects. To get (9), just average (8) over
all the subjects, and drop ave(u); to get (10), multiply across by Zi before
averaging, and drop ave(Zu) afterwards.

The system is just-identified. Solving equation (9) for â tells us that
â = ave(Y ) − b̂ave(X). So (10) implies

ave(ZY ) − ave(Z)ave(Y ) = b̂ [ave(ZX) − ave(Z)ave(X)]. (11)

Thus,

b̂ = ave(ZY ) − ave(Z)ave(Y )

ave(ZX) − ave(Z)ave(X)
. (12)

Suppose there are n subjects in the assigned-to-treatment group, with
average response YT , and the fraction who take treatment is XT . Similarly,
there are m subjects in the the assigned-to-control group; their average re-
sponse is YC , and a fraction XC of them take treatment. Multiply numerator
and denominator of (12) by n + m. Now, for instance, (n + m)ave(ZY ) is
just the sum of the responses over the assigned-to-treatment group, and so
is nYT ; also (n + m)ave(Z) = n. After the multiplication, the numerator
in (12) becomes

nYT − n

n + m
(nYT + mYC) = nm

n + m
(YT − YC)

and the denominator becomes

nXT − n

n + m
(nXT + mXC) = nm

n + m
(XT − XC)

because

n − n2

n + m
= nm

n + m
= n

n + m
m.

We get the desired formula because nm/(n + m) cancels on division.
The instrumental-variables estimator (7) is a generalization of (4); see

Imbens and Angrist (1994) or Angrist, Imbens, and Rubin (1996). When
there is only single crossover, say from treatment to control, then the differ-
ential effect of treatment on the treated coincides with the effect on compliers:
α = 0, so (T−C)×β/(α+β) = T−C, which can be estimated by (7) or (4).
For general information on instrumental variables, see Freedman (2005b).
There is a large econometric literature that discusses the effect of treatment
on the treated. One entry point is the April 1995 issue of Journal of Business
& Economic Statistics; another is Heckman, Tobias, and Vytlacil (2001).
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Why is an identifying restriction needed?

In the model for crossover, there are 9 free parameters: α, β, γ , A, T, C,
N, T, C. In the treatment group, you see the fraction that accept treatment,
and their average response, as well as the average response among those
who decline: that is 3 pieces of information. You get another 3 pieces of
information from the controls. That imposes 6 linear constraints on the 9
parameters. The argument is informal, but sound. Eliminating defiers (by
assumption) eliminates 3 parameters, and makes the system just-identified.

Bias and variance

In a formula like (3), the estimators β̂, γ̂ , and N̂ are unbiased in a
strict technical sense: E(β̂) = β, E(γ̂ ) = γ , and E(N̂) = N, even in
small samples: the last is because, given the mix of never-treat subjects and
compliers in each arm of the experiment, the conditional expectation of N̂

equals N. In more detail, the number of never-treat subjects in the treatment
arm is random. Given that this number is n, say, the never-treat subjects in
the treatment arm constitute a random sample of size n from the totality of
never-treat subjects in the study population: this is a consequence of random
assignment. The expected value of the average response is therefore N.
Hence, the conditional expectation of N̂ is N. Finally, the unconditional
expectation must be N too.

In the same way, the numerator and denominator of Ĉ are unbiased
estimates for the numerator and denominator of (2). However, Ĉ itself
is biased (ratio-estimator bias), due to the division in (3): division is a
nonlinear operation. With large samples, the bias will be trivial. There
is similar bias in the treatment-received, per-protocol, and instrumental-
variables estimators. Thus, for example, T − C is estimable, up to a trivial
amount of ratio-estimator bias.

Bias and variance for complex estimators like the instrumental-variables
estimator can be worked out, to a good approximation, using the delta
method. In effect, nonlinear statistics are approximated by simpler linear
statistics. The error is a quadratic function of the data, which accounts for
the bias (van der Vaart, 1998). In the econometric literature, the bias in the
instrumental-variables estimator is called small-sample bias. The intention-
to-treat estimator is unbiased, even with small samples.

Regression models

Suppose the response is quantitative (otherwise, we switch to logits and
probits). Let Zi be the assignment variable: Zi = 1 if subject i is assigned
to treatment, and Zi = 0 if i is assigned to control. The response variable is
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Yi = ZiTi + (1 − Zi)Ci , which is observable. For instance, if subject i is
assigned to treatment, then Ti is observed and Yi = 1×Ti+(1−1)×Ci = Ti :
the unobserved Ci drops out of the formula.

Experimental (and non-experimental) data are often analyzed using a
regression model of the form

Yi = a + bZi + Wiβ + εi, (13)

where Wi is a vector of control variables for subject i, while a, b, and β are
parameters (ifWi is 1×p, thenβ isp×1). The effect of treatment is measured
by b. The disturbances εi would be assumed independent across subjects,
with expectation 0 and constant variance. The Zi and Wi would also need
to be independent of the disturbances (this is the exogeneity assumption).

Randomization guarantees that the Zi are independent of the Wi and
εi . But why are Wi and εi independent? Why are the εi independent across
subjects, with expectation 0 and constant variance? Replacing the indicator
Zi for assignment by an indicator Xi for treatment received makes the model
less secure: why is choice of treatment independent of the disturbance term?
With observational data, such questions are even thornier. Of course, there
are models with assumptions that are more general and harder to fathom.
But that only postpones the reckoning. More-complicated questions can in
turn be asked about more-complicated models.

Estimating the average causal effect by regression

If there is only one level of treatment, and control, then b̂ in (13) es-
timates the average causal effect—at least when the sample is large. With
more levels of treatment, or smaller samples, regression estimates are sub-
ject to bias. Even with one level of treatment, standard errors computed by
the usual procedures can be quite misleading.

Mistakes to avoid

Randomization guarantees that the assignment variable Z is statistically
independent of the covariates W . That, however, does not translate to exact
orthogonality on the sample data. If it did, nobody would bother adjust-
ing, because adjustment would make no difference to estimated treatment
effects. According to the Neyman-Holland Rubin model, the multiple regres-
sion estimator is conditionally biased. Indeed, given the assignment vari-
able, the response is deterministic. Unconditionally, with suitable regularity
conditions—and only two possible values for the assignment variable—
the bias goes to 0 as sample size increases. Asymptotic variance may be
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decreased by modeling, or increased. The usual formula for asymptotic
variance may be severely biased. For details, see Freedman (2006).

Summary

With models, it is easy to lose track of three essential points: (i) re-
sults depend on assumptions, (ii) changing the assumptions in apparently
innocuous ways can lead to drastic changes in conclusions, and (iii) famil-
iarity with a model’s name is no guarantee of the model’s truth. Under the
circumstances, it may be the assumptions behind the model that provide the
leverage, not the data fed into the model. This is a danger with experiments,
and even more so with observational studies.
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